插值法在图像处理中的运用要点Word文件下载.docx
- 文档编号:13255587
- 上传时间:2022-10-08
- 格式:DOCX
- 页数:39
- 大小:298.71KB
插值法在图像处理中的运用要点Word文件下载.docx
《插值法在图像处理中的运用要点Word文件下载.docx》由会员分享,可在线阅读,更多相关《插值法在图像处理中的运用要点Word文件下载.docx(39页珍藏版)》请在冰豆网上搜索。
一般采用计算机处理或者硬件处
理,处理的内容丰富,精度高,变通能力强,可进行非线性处理。
但是处理速度就会有所不
足。
图像处理的主要内容有:
几何处理、算术处理、图像增强、图像复原、图像重建、图像
编码、图像识别、图像理解等。
以上这些图像处理大体上可分为图像的像质改善、图像分析
和图像重建三大部分。
日常生活中,越来越多的领域需要高分辨率图像,采用图像插值技术来提高数字图像的
分辨率和清晰度,从软件方面进行改进就具有十分重要的实用价值。
多媒体通信在现代网络
传输中扮演重要角色,因此插值放大提高图像分辨率是一个非常重要的问题。
此外,图像变
换被广泛用于遥感图像的几何校正、医学成像以及电影、电视和媒体广告等影像特技处理中。
在进行图像的一些几何变换时,通常都会出现输出像素坐标和输入栅格不重合的现象,也必
须要用到图像插值。
图像插值是图像处理中图像重采样过程中的重要组成部分,而重采样过
程广泛应用于改善图像质量、进行有损压缩等,因而研究图像插值具有十分重要的理论意义
和实用价值。
图像插值是一个数据再生过程。
由原始图像数据再生出具有更高分辨率的图像数据。
分
为图像内插值和图像间插值。
前者指将一幅较低分辨率的图像再生出一幅较高分辨率的图
像。
后者指在若干幅图像之间再生出几幅新的图像。
插值过程就是确定某个函数在两个采样
点之间的数值时采用的运算过程.通常是利用曲线拟合的方法进行插值算法,通过离散的输
入采样点建立一个连续函数,用这个重建的函数求出任意位置处的函数值,这个过程可看作
是采样的逆过程。
20世纪40年代末,香农提出了信息论,根据采样定理,若对采样值用sinc函数进行插
值,则可准确地恢复原函数,于是sinc函数被接受为插值函数,也称为理想插值函数。
理
想插值函数有两个缺点:
(1)它虽然对带限信号可以进行无错插值,但实际中带限信号只是一小部分信号。
(2)sinc函数的支撑是无限的,而没有函数既是带限的,又是紧支撑的。
为了解决这个问题,经典的办法是刚窗函数截断sinc函数,这个窗函数必须在0剑l
之间为正数,在l到2之间为负数。
sinc函数对应的是无限冲激响应,不适于有限冲激相应
来进行局部插值。
对数字图像来说,对图像进行插值也称为图像的重采样。
它分为两个步骤:
将离散图像插值为连续图像以及对插值结果图像进行采样。
经典的图像插值算法是利用邻近像素点灰度值的加权平均值来计算未知像素点处的灰
度值,而这种加权平均一般表现表现为信号的离散采样值与插值基函数之间的二维卷积。
这
种基于模型的加权平均的图像插值方法统称为线性方法。
经典的插值方法有:
最近邻域法,
双线性插值,双三次B样条插值,双三次样条插值,sinc函数等。
线性方法,它们一个共同
点就是,所有这些基函数均是低通滤波器,对数据中的高频信息都具有滤除和抑制效应,因
此在插值后的图像中不会增加新的高频部分。
从而这些基函数对于边缘细节和纹理特征十分
丰富的图像的插值效果并不太理想,但对于一般的灰度图像比较适用,结果也是比较好的。
由于线性方法都是低通滤波器,在实现时都不可避免地抑制了图像的高频部分,为了寻找新的出路,有人提出将线性时变技术或非线性技术引入图像插值中来.典型的方法有中值
插值法、自适应插值算法、子带插值法以及分形插值算法等。
中值插值方法是在双线性插值的基础上,去除该分量邻近已知点最大值和最小值,将待插点的值用两个中间值的平均代替。
使用线性方法进行插值时,不可避免地出现图像模糊问题。
自适应插值算法试图融入人眼视觉系统的一些特征,如方向敏感性,利用预先从点的邻
域抽取到的一些符合视觉特征的局部图像特征来进行插值。
几乎所有的图像插值算法都试图
实现对图像边缘部分的自适应处理,尽量使原图像的边缘特征能够保持。
胡敏等提出了一种
有理一线性的自适应彩色图像向量值插值方法。
李将云等提出了离散放缩算法,还提出分割
图像插值的一种局部算法。
目前,也有很多研究人员将偏微分方程、最优化理论、径向基函数、分形与小波等非线
性方法应用于数字图像处理领域,并取得了一些成功。
但在混合函数空间中构造满足需要的
适当的基函数,并挖掘出适应于图像处理的优良性态,将其应用于数字图像处理领域,目前
国内外已知的文献中并不多见。
二、原理
最近邻点插值法(NearestNeighborInterpolation)是荷兰气象学家A.H.Thiessen提出的
一种分析方法。
最初用于从离散分布气象站的降雨量数据中计算平均降雨量,现在GIS和
地理分析中经常采用泰森多边形进行快速的赋值。
研究最近邻点插值法时,我们可以将一幅图像定义为一个二维函数F(x,y),其中x和y
表示空间坐标,而F对于任何(x,y)坐标的函数值叫做那一点的灰度值(graylevel)。
当x,y
和F的值都是有限的、离散的数值时,我们称这幅图片为数字图像。
如果把Fw,Fh设为
源图的宽度和高度;
Gw,Gh设为目标图的宽度和高度。
那么源图坐标与目标图坐标的关系如公式
(1)、公式
(2):
F(x)=G(x)*(Fw/Gw)
(1)
F(y)=G(y)*(Fh/Gh)
(2)
以目标原点为例,套用公式,就可以找到对应的原图的坐标了。
(0*(3/4),0*(3/4))
→(0*0.75,0*0.75
)→(0,0)
计算源图片的对应坐标,就可以把源图中坐标为(
0,0)处的
232象素值填进去目标
图的(
0,0)这个位置了。
按此方法计算出目标图片(
1,0)处对应的坐标:
(1*0.75,0*0.75)
→(0.75,0)
结果发现,得到的坐标里面有小数,象素的坐标都是整数。
这时候采用的一种策略就是
采用四舍五入的方法(也可以采用直接舍掉小数位的方法),把非整数坐标转换成整数,按
照四舍五入的方法就得到坐标(1,0),完整的运算过程就是这样的:
(1*0.75,0*0.75)→(0.75,0)→(1,0)
那么就可以再填一个象素到目标矩阵中了,同样是把源图中坐标为(1,0)处的像素值
87填入目标图中的坐标。
依次填完每个象素,一幅放大后的图像就诞生了,像素矩阵如图
2所示。
这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重
的马赛克,缩小后的图像有很严重的失真。
效果不好的根源在于最临近插值方法引入了严重
的图像失真。
例如,当反推目标图坐标取得的源图坐标是一个浮点数的时候,采用四舍五入
的方法直接获得最接近的象素的值,这种方法是很不科学的。
当推得坐标值为0.75时,不
应该简单的取为1,目标象素值其实应该根据这个源图中虚拟的点四周的四个真实的点来按
照一定的规律计算出来的,这样才能达到更好的缩放效果。
双线型内插值算法就是一种比
较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决
定目标图中的一个像素值,因此缩放效果比简单的最近邻点插值要好很多。
图1.3*3灰度图图2.扩充后的4*4灰度图
双线性插值利用(u,v)周围的四个最邻近像素的灰度值,
度值。
设(u,v)四个邻近像素点为ABCD
根据下面方法来计算坐标分别为
(u,v)处的灰
(i,j),(i+1,j),
(i,j+1),(i+1,j+1)
(i,j+1)C
D
E
F
(u,v)
A
(i,j)
B(i+1,j)
图
3.
设
ui
vj
。
首先先计算出
E,F
两处的灰度值,
f(E)
和
f(F)
,
f(E)=
[f(C)-f(A)]+f(A)
f(F)=
[f(D)-f(B)]+f(B)
再计算(u,v):
f(u,v)=
[f(F)-f(E)]+f(E)
此f(u,v)值代表的就是校正后图像中
(x,y)处的灰度值。
算法的流程图为:
开始
读入图像到矩阵a
取矩阵的长宽存放到h,w中
生成一个与矩阵a相同维数的矩阵sp存放校正图信息
求解系数估计a0、b0
1=>
I
J
构造逆向映射多项式
x=[1,j-og
(1),i-og
(2),(j-og
(1))^2,(i-og
(2))*(j-og
(1)),(i-og
(2))^2]
;
用逆向映射求理想图点在失真图中的映射
u=x*a0;
v=x*b0;
N
点(u,v)在畸变图中
Y
对u,v取整并计算参数arfbta
k
做双线性插值
J+1=>
K<
4?
J<
w+1?
I+1=>
I<
h+1
结束
图4.双线性插值流程
双三次插值又称立方卷积插值。
三次卷积插值是一种更加复杂的插值方式。
该算法利用
待采样点周围16个点的灰度值作三次插值,不仅考虑到4个直接相邻点的灰度影响,而且考虑到各邻点间灰度值变化率的影响。
三次运算可以得到更接近高分辨率图像的放大效果,
但也导致了运算量的急剧增加。
这种算法需要选取插值基函数来拟合数据,其最常用的插值基函数如图1所示。
图5.双三次插值基函数
其数学表达式如下:
双三次插值公式如下:
f(i+u,j+v)=ABC
其中,A、B、C均为矩阵,其形式如下:
f(i,j)表示源图像(i,j)处像素点的灰度值,如图6所示。
图6
自适应插值技术
为了解决保持图像背景高阶平滑与保持图像边缘清晰的矛盾,现代图像插值技术借鉴模
式识别、多信道处理、分形拓扑、小波多分辨率分析、有理滤波、神经网络、图像最佳复原
等技术,分析图像局部的频率成分和连续性以调节插值系数,建立局部自适应的空间移变插
值算法,从而改善重建图像的质量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 插值法 图像 处理 中的 运用 要点