广州一模试题及标准答案文科数学Word格式文档下载.doc
- 文档编号:13130351
- 上传时间:2022-10-06
- 格式:DOC
- 页数:14
- 大小:1.22MB
广州一模试题及标准答案文科数学Word格式文档下载.doc
《广州一模试题及标准答案文科数学Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《广州一模试题及标准答案文科数学Word格式文档下载.doc(14页珍藏版)》请在冰豆网上搜索。
结束
是
否
输入
(3)已知,且,则
(A) (B) (C) (D)
(4)阅读如图的程序框图.若输入,则输出的值为
(A)(B)(C)(D)
(5)已知函数则
(A) (B) (C) (D)
(6)已知双曲线的一条渐近线方程为,,分别
是双曲线的左,右焦点,点在双曲线上,且,则等于
(A)(B)(C)(D)
(7)四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的
硬币.若硬币正面朝上,则这个人站起来;
若硬币正面朝下,则这个人继续坐着.那么,没
有相邻的两个人站起来的概率为
(A)(B)(C)(D)
(8)如图,网格纸上小正方形的边长为1,粗线画出的是
某几何体的正视图(等腰直角三角形)和侧视图,
且该几何体的体积为,则该几何体的俯视图可以是
(A)(B)(C)(D)
(9)设函数,若曲线在点处的切线方程为
,则点的坐标为
(A)(B) (C) (D)或
(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;
将四
个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,⊥平面,
,,三棱锥的四个顶点都在球的球面上,则球的表面
积为
(A)(B)(C)(D)
(11)已知函数是奇函数,直线
与函数的图象的两个相邻交点的横坐标之差的绝对值为,则
(A)在上单调递减(B)在上单调递减
(C)在上单调递增(D)在上单调递增
(12)已知函数,则的值为
(A)(B)(C)(D)
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13~21题为必考题,每个考生都必须作答。
第22~23题为选考题,考生根据要求作答。
二、填空题:
本小题共4题,每小题5分。
(13)已知向量,,若∥,则.
(14)若一个圆的圆心是抛物线的焦点,且该圆与直线相切,则该圆的
标准方程是.
(15)满足不等式组的点组成的图形的面积是,则实数
的值为.
(16)在△中,,当△的周长最短时,
的长是.
三、解答题:
解答应写出文字说明、证明过程或演算步骤。
(17)(本小题满分12分)
已知数列的前n项和为,且(nN*).
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前n项和.
(18)(本小题满分12分)
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.
质量指标值
频数
(190,195]
9
(195,200]
10
(200,205]
17
(205,210]
8
(210,215]
6
图1:
乙流水线样本频率分布直方图
表1:
甲流水线样本的频数分布表
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
甲生产线
乙生产线
合计
合格品
不合格品
附:
(其中为样本容量)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(19)(本小题满分12分)
如图1,在直角梯形中,//,⊥,⊥,点是边的
中点,将△沿折起,使平面⊥平面,连接,,,得到如
图2所示的几何体.
(Ⅰ)求证:
⊥平面;
(Ⅱ)若与其在平面内的正投影所成角的正切值为,求点到平面
的距离.
图1图2
(20)(本小题满分12分)
已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线
的斜率是否为定值?
若是,求出该值;
若不是,说明理由.
(21)(本小题满分12分)
已知函数.
(Ⅰ)若函数有零点,求实数的取值范围;
(Ⅱ)证明:
当时,.
请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分。
(22)(本小题满分10分)选修4-4:
坐标系与参数方程
在直角坐标系中,直线的参数方程为为参数.在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,曲线
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)求曲线上的点到直线的距离的最大值.
(23)(本小题满分10分)选修4-5:
不等式选讲
已知函数.
(Ⅰ)若,求实数的取值范围;
(Ⅱ)若R,求证:
.
文科数学试题答案及评分参考
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;
如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数.选择题不给中间分.
一、选择题
(1)B
(2)A (3)C (4)B (5)A (6)C
(7)B (8)C (9)D (10)C (11)D (12)B
二、填空题
(13) (14) (15) (16)
三、解答题
(17)解:
(Ⅰ)当时,,即,………………………………………1分
解得.………………………………………………………2分
当时,,………………3分
即,………………………………………………………4分
所以数列是首项为,公比为的等比数列.……………………………………5分
所以(nN*).………………………………………………6分
(Ⅱ)因为,………………………………………………8分
所以………………………………………………9分
………………………………………………10分
………………………………………………11分
.………………………………………………12分
(18)解:
(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为,因为
,
………………………………………1分
则……………………………3分
解得.………………………………………4分
(Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,
则甲流水线生产的产品为不合格品的概率为………………………5分
乙流水线生产的产品为不合格品的概率为,………6分
于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产
的不合格品件数分别为:
.…………………………8分
(Ⅲ)列联表:
35
40
75
15
25
50
100
…………………………10分
则,……………………………………………11分
因为
所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线
的选择有关”.……………………………………………………12分
(19)解:
(Ⅰ)因为平面⊥平面,平面平面,
又⊥,所以⊥平面.…………………………………1分
因为平面,所以⊥…………………………………2分
又因为折叠前后均有⊥,∩,…………………………………3分
所以⊥平面.…………………………………4分
(Ⅱ)由(Ⅰ)知⊥平面,所以在平面内的正投影为,
即∠为与其在平面内的正投影所成角.……………………………5分
依题意,
因为所以.…………………………6分
设,则,
因为△~△,所以,………………………………7分
即,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广州 试题 标准答案 文科 数学 精品 文档