全等三角形难题集锦-全等三角形压轴题难题Word下载.doc
- 文档编号:13044248
- 上传时间:2022-10-03
- 格式:DOC
- 页数:13
- 大小:727.50KB
全等三角形难题集锦-全等三角形压轴题难题Word下载.doc
《全等三角形难题集锦-全等三角形压轴题难题Word下载.doc》由会员分享,可在线阅读,更多相关《全等三角形难题集锦-全等三角形压轴题难题Word下载.doc(13页珍藏版)》请在冰豆网上搜索。
(2)将△EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为
(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?
若成立,给出证明;
若不成立,请说明理由.
4.如图1、图2、图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º
,
(1)在图1中,AC与BD相等吗,有怎样的位置关系?
请说明理由。
(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?
为什么?
(3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?
还具有上问中的位置关系吗?
考点:
旋转的性质;
全等三角形的判定与性质;
等腰直角三角形.分析:
(1)根据等腰三角形的两腰相等进行解答.
(2)证明△DOB≌△COA,根据全等三角形的对应边相等进行说明.解答:
解:
(1)相等.
在图1中,∵△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°
∴OA=OB,OC=OD,
∴0A-0C=0B-OD,
∴AC=BD;
(2)相等.
在图2中,0D=OC,∠DOB=∠COA,OB=OA,
∴△DOB≌△COA,
∴BD=AC.点评:
本题考查了等腰三角形的性质、全等三角形的性质以及旋转问题,在旋转的过程中要注意哪些量是不变的,找出图形中的对应边与对应角.
5(2008河南).(9分)复习“全等三角形”的知识时,老师布置了一道作业题:
“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.
等腰三角形的性质.专题:
证明题;
探究型.分析:
此题的两个小题思路是一致的;
已知∠QAP=∠BAC,那么这两个等角同时减去同一个角(2题是加上同一个角),来证得∠QAB=∠PAC;
而根据旋转的性质知:
AP=AQ,且已知AB=AC,即可由SAS证得△ABQ≌△ACP,进而得出BQ=CP的结论.解答:
证明:
(1)∵∠QAP=∠BAC,
∴∠QAP-∠BAP=∠BAC-∠BAP,
即∠QAB=∠CAP;
在△BQA和△CPA中,
AQ=AP∠QAB=∠CAPAB=AC,
∴△BQA≌△CPA(SAS);
∴BQ=CP.
(2)BQ=CP仍然成立,理由如下:
∵∠QAP=∠BAC,
∴∠QAP+∠PAB=∠BAC+∠PAB,
即∠QAB=∠PAC;
在△QAB和△PAC中,
AQ=AP∠QAB=∠PACAB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.点评:
此题主要考查了等腰三角形的性质以及全等三角形的判定和性质;
选择并利用三角形全等是正确解答本题的关键.
5(2009山西太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和.且≌。
将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点.
①当旋转至如图②位置,点,在同一直线上时,与的数量关系是.
②当继续旋转至如图③位置时,
(1)中的结论还成立吗?
AO与DO存在怎样的数量关系?
请说明理由.
全等三角形的判定与性质.专题:
(1)根据外角的性质,得∠AFD=∠D+∠ABC,∠DCA=∠A+∠ABC,从而得出∠AFD=∠DCA;
(2)成立.由△ABC≌△DEF,可证明∠ABF=∠DEC.则△ABF≌△DEC,从而证出∠AFD=∠DCA;
(3)BO⊥AD.由△ABC≌△DEF,可证得点B在AD的垂直平分线上,进而证得点O在AD的垂直平分线上,则直线BO是AD的垂直平分线,即BO⊥AD.解答:
(1)∠AFD=∠DCA(或相等).
(2)∠AFD=∠DCA(或成立),理由如下:
方法一:
由△ABC≌△DEF,得AB=DE,BC=EF(或BF=EC),∠ABC=∠DEF,∠BAC=∠EDF.∴∠ABC-∠FBC=∠DEF-∠CBF,
∴∠ABF=∠DEC.
在△ABF和△DEC中,AB=DE∠ABF=∠DECBF=EC
∴△ABF≌△DEC,∠BAF=∠EDC.
∴∠BAC-∠BAF=∠EDF-∠EDC,∠FAC=∠CDF.
∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,
∴∠AFD=∠DCA.
方法二:
连接AD.同方法一△ABF≌△DEC,
∴AF=DC.
由△ABC≌△DEF,得FD=CA.
在△AFD≌△DCA,AF=DCFD=CAAD=DA
∴△AFD≌△DCA,∠AFD=∠DCA.
(3)如图,BO⊥AD.
由△ABC≌△DEF,点B与点E重合,
得∠BAC=∠BDF,BA=BD.
∴点B在AD的垂直平分线上,
且∠BAD=∠BDA.
∵∠OAD=∠BAD-∠BAC,∠ODA=∠BDA-∠BDF,
∴∠OAD=∠ODA.
∴OA=OD,点O在AD的垂直平分线上.
∴直线BO是AD的垂直平分线,BO⊥AD.
延长BO交AD于点G,同方法一,OA=OD.
在△ABO和△DBO中,AB=DBBO=BOOA=OD
∴△ABO≌△DBO,∠ABO=∠DBO.
在△ABG和△DBG中,AB=DB∠ABG=∠DBGBG=BG
∴△ABG≌△DBG,∠AGB=∠DGB=90°
.
∴BO⊥AD.点评:
本题考查了三角形全等的判定和性质以及旋转的性质,是基础知识要熟练掌握.
例1正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.
正方形的性质.分析:
延长EB使得BG=DF,易证△ABG≌△ADF(SAS)可得AF=AG,进而求证△AEG≌△AEF可得∠EAG=∠EAF,再求出∠EAG+∠EAF=90°
即可解题.解答:
延长EB使得BG=DF,
在△ABG和△ADF中,
由AB=AD∠ABG=∠ADF=90°
BG=DF,
可得△ABG≌△ADF(SAS),
∴∠DAF=∠BAG,AF=AG,
又∵EF=DF+BE=EB+BG=EG,AE=AE,
∴△AEG≌△AEF(SSS),
∴∠EAG=∠EAF,
∵∠DAF+∠EAF+∠BAE=90°
∴∠EAG+∠EAF=90°
∴∠EAF=45°
答:
∠EAF的角度为45°
.点评:
本题考查了正方形各内角均为直角,考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证∠EAG=∠EAF是解题的关键.
例2D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。
(1)当绕点D转动时,求证DE=DF。
(2)若AB=2,求四边形DECF的面积。
等腰直角三角形.专题:
计算题.分析:
(1)连CD,根据等腰直角三角形的性质得到CD平分∠ACB,CD⊥AB,∠A=45°
,CD=DA,则∠BCD=45°
,∠CDA=90°
,由∠DM⊥DN得∠EDF=90°
,根据等角的余角相等得到∠CDE=∠ADF,根据全等三角形的判定易得△DCE≌△ADF,即可得到结论;
(2)由△DCE≌△ADF,则S△DCE=S△ADF,于是四边形DECF的面积=S△ACD,由而AB=2可得CD=DA=1,根据三角形的面积公式易求得S△ACD,从而得到四边形DECF的面积.解答:
(1)连CD,如图,
∵D为等腰Rt△ABC斜边AB的中点,
∴CD平分∠ACB,CD⊥AB,∠A=45°
,CD=DA,
∴∠BCD=45°
∵∠DM⊥DN,
∴∠EDF=90°
∴∠CDE=∠ADF,
(图1)
(图2)
(图3)
在△DCE和△ADF中,
∠DCE=∠DAFDC=DA∠CDE=∠ADF,
∴△DCE≌△ADF,
∴DE=DF;
(2)∵△DCE≌△ADF,
∴S△DCE=S△ADF,
∴四边形DECF的面积=S△ACD,
而AB=2,
∴CD=DA=1,
∴四边形DECF的面积=S△ACD=12CD•DA=12.点评:
本题考查了旋转的性质:
旋转前后两图形全等,即对应角相等,对应线段相等,对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质以及全等三角形的判定与性质.
6、已知四边形中,,,,,,绕点旋转,它的两边分别交(或它们的延长线)于.
当绕点旋转到时(如图1),易证.
当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?
若成立,请给予证明;
若不成立,线段,又有怎样的数量关系?
请写出你的猜想,不需证明.
7(西城09年一模)已知:
PA=,PB=4,以AB为一边作
正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°
时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及
相应∠APB的大小.
图1图2图3
(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;
此时;
(II)如图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 难题 集锦 压轴