六年级数学上册知识点语文.docx
- 文档编号:1304031
- 上传时间:2022-10-20
- 格式:DOCX
- 页数:11
- 大小:22.57KB
六年级数学上册知识点语文.docx
《六年级数学上册知识点语文.docx》由会员分享,可在线阅读,更多相关《六年级数学上册知识点语文.docx(11页珍藏版)》请在冰豆网上搜索。
六年级数学上册知识点语文
六年级数学上册知识点
1.位置的表示方法:
A(列,行)如:
A(3,4)表示A点在第三列第四行。
一般先看横的数字,再看竖的数字,注意中间是逗号
2.分数乘法的意义:
一个数×分数
分数×一个数
3.乘积是1的两个数互为倒数1的倒数是10没有倒数
4.除以一个不等于0的数,等于乘这个数的倒数
5.两个数相除又叫做两个数的比。
比值通常用分数表示,也可以用分数或整数
6.比的基本性质:
比的前项和后项同时乘或除以相同的数(0除外),比值不变
7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
8.有关圆的公式:
C=兀d=2兀rS=兀r2
d=C÷兀d=2rr=d÷2r=C÷兀÷2
圆环的面积S=兀R2-兀r2
9.原价×折扣=现价营业额×税率=应纳税额本金×利率×时间=利息
10.条形统计图:
可以清楚的看出数据的多少
折线统计图:
可以清楚的看出数据的增减变化趋势
扇形统计图:
可以清楚的看出各部分同总数之间的关系
六年级数学下册知识点
一、比例
1、比例的基本性质是在比例里两内项积等于两外项积。
2、用x和y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
Y:
x=k(一定)
3、用x和y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
Xy=k(一定)
二、数与代数(复习)
1、自然数和0都是整数。
2、自然数:
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位:
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:
整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
6:
倍数和因数:
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数。
倍数和因数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的因数。
7、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:
10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:
3、6、9、…其中最小的倍数是3,没有最大的倍数。
9、能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2整除的特征可分为奇数和偶数。
10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:
2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。
12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
13、每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
14、几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。
15、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
16、如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
17、如果两个数是互质数,它们的最大公因数就是1。
18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……
3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
。
19、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
20、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1、小数的意义:
把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
(三)分数
1、分数的意义:
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类
真分数:
分子比分母小的分数叫做真分数。
真分数小于1。
假分数:
分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:
假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)约分和通分
1、约分的方法:
用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:
先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
三性质和规律
1、商不变的规律:
商不变的规律:
在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
2、小数的性质:
在小数的末尾添上零或者去掉零小数的大小不变。
3、小数点位置的移动引起小数大小的变化
(1)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
(3)小数点向左移或者向右移位数不够时,要用“0补足位。
(五)分数的基本性质
分数的基本性质:
分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(六)分数与除法的关系
1.被除数÷除数=被除数/除数
2.因为零不能作除数,所以分数的分母不能为零。
3.被除数相当于分子,除数相当于分母。
四运算的意义
(一)整数四则运算
加数+加数=和
一个加数=和-另一个加数
被减数-减数=差
被减数=减数+差
减数=被减数-差
一个因数×一个因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
(二)运算定律
1.加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2.加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
3.乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4.乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
5.乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。
6.减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。
(三)运算法则
1.整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2.整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3.整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4.整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
5.小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6.除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7.除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8.同分母分数加减法计算方法:
同分母分数相加减,只把分子相加减,分母不变。
9.异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。
10.带分数加减法的计算方法:
整数部分和分数部分分别相加减,再把所得的数合并起来。
整
(一)小数乘除法的意义及法则
1.小数乘法意义:
小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例:
3.5×4表示4个3.5相加是多少。
或表示3.5的4倍是多少。
一个数乘小数的意义与整数乘法的意义不同,是求这个数的十分之几,百分之几,千分之几……。
例:
25×0.17,表示25的百分之十七是多少。
2.小数除法的意义
小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
例:
表示已知两个因数的积是0.75和其中一个因数0.5,求另一个因数是多少。
或表示0.75是0.5的多少倍。
(二)小数乘除法的计算法则
1.小数乘法法则:
(1)先按照整数乘法的法则计算;
(2)看因数中一共有几位小数,就从积的右边数出几位,点上小数点。
2.小数除法法则:
(1)先按照整数除法的法则去除;
(2)商的小数点和被除数的小数点对齐;
(3)除到被除数的末尾仍有余数,就在余数后面添0再继续除。
二、度量衡
长度单位换算
1千米=1000米1米=10分米
1分米=10厘米1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 数学 上册 知识点 语文
