算法设计与分析考试题自测.docx
- 文档编号:12697632
- 上传时间:2023-04-21
- 格式:DOCX
- 页数:19
- 大小:89.19KB
算法设计与分析考试题自测.docx
《算法设计与分析考试题自测.docx》由会员分享,可在线阅读,更多相关《算法设计与分析考试题自测.docx(19页珍藏版)》请在冰豆网上搜索。
算法设计与分析考试题自测
1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:
_有穷性__,_确定性_,_可行性_,_(0个或多个)输入__,_(1个或多个)_输出_。
2.算法的复杂性有__时间复杂性__和__空间复杂性__之分,衡量一个算法好坏的标准是__时间复杂度高低___。
3.某一问题可用动态规划算法求解的显著特征是___该问题具有最优子结构性质___。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X和Y的一个最长公共子序列_{A,B,C,D}_。
{BABCD}或{CABCD}或{CADCD}
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含_问题的一个(最优)解_。
6.动态规划算法的基本思想是将待求解问题分解成若干_子问题_,先求解_子问题__,然后从这些_子问题_的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为__回溯法__。
8.0-1背包问题的回溯算法所需的计算时间为__O(n2n)__,用动态规划算法所需的计算时间为_O(n)__。
o(min{nc,2n})
9.动态规划算法的两个基本要素是_最优子结构_和_重叠子问题___。
10.二分搜索算法是利用__动态规划法__实现的算法。
二、综合题(50分)
1.写出设计动态规划算法的主要步骤。
1、解:
(1)找出最优解的性质,并刻画其结构特征;
(2)递归地定义最优值;
(3)以自底向上的方式计算出最优值;
(4)根据计算最优值时得到的信息,构造最优解。
①问题具有最优子结构性质;②构造最优值的递归关系表达式;
③最优值的算法描述;④构造最优解
2.流水作业调度问题的johnson算法的思想。
2、解:
①令N1={i|ai
③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
3、解:
步骤为:
N1={1,3},N2={2,4};
N1’={1,3},N2’={4,2};
最优值为:
38
4.使用回溯法解0/1背包问题:
n=3(3种物品),C=9(背包的容量为9),V={6,10,3}(3种物品的价值分别为6,10,3),W={3,4,4}(3种物品的重量分别为3,4,4),其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
4、解:
其解空间为:
{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}
解空间树为:
该问题的最优值为:
16=6+10最优解为:
(1,1,0)
5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,
(1)在二叉搜索树的内结点中找到X=Xi,其概率为bi。
(2)在二叉搜索树的叶结点中确定X∈(Xi,Xi+1),其概率为ai。
在表示S的二叉搜索树T中,设存储元素Xi的结点深度为Ci;叶结点(Xi,Xi+1)的结点深度为di,则二叉搜索树T的平均路长p为多少?
假设二叉搜索树T[i][j]={Xi,Xi+1,···,Xj}最优值为m[i][j],W[i][j]=ai-1+bi+···+bj+aj,则m[i][j](1<=i<=j<=n)递归关系表达式为什么?
5、解:
二叉树T的平均路长P=
+
m[i][j]=W[i][j]+min{m[i][k]+m[k+1][j]}(1<=i<=j<=n,m[i][i-1]=0)
m[i][j]=0(i>j)
6.描述0-1背包问题。
6、解:
已知一个背包的容量为C,有n件物品,物品i的重量为Wi,价值为Vi,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、简答题(30分)
1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法。
(函数名可写为sort(s,n))
2.最优二叉搜索树问题的动态规划算法(设函数名binarysearchtree))
答案:
一、填空
1.确定性有穷性可行性0个或多个输入一个或多个输出
2.时间复杂性空间复杂性时间复杂度高低
3.该问题具有最优子结构性质
4.{BABCD}或{CABCD}或{CADCD}
5.一个(最优)解
6.子问题子问题子问题
7.回溯法
8.o(n*2n)o(min{nc,2n})
9.最优子结构重叠子问题
10.动态规划法
二、综合题
1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;
2.①令N1={i|ai
3.步骤为:
N1={1,3},N2={2,4};
N1’={1,3},N2’={4,2};
最优值为:
38
4.解空间为{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),
(1,1,0),(1,1,1)}。
解空间树为:
该问题的最优值为:
16最优解为:
(1,1,0)
5.二叉树T的平均路长P=
+
m[i][j]=W[i][j]+min{m[i][k]+m[k+1][j]}(1<=i<=j<=n,m[i][i-1]=0)
m[i][j]=0(i>j)
6.已知一个背包的容量为C,有n件物品,物品i的重量为Wi,价值为Vi,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、简答题
1.
voidsort(flowjopes[],intn)
{
inti,k,j,l;
for(i=1;i<=n-1;i++)//-----选择排序
{
k=i;
while(k<=n&&s[k].tag!
=0)k++;
if(k>n)break;//-----没有ai,跳出
else
{
for(j=k+1;j<=n;j++)
if(s[j].tag==0)
if(s[k].a>s[j].a)k=j;
swap(s[i].index,s[k].index);
swap(s[i].tag,s[k].tag);}
}
l=i;//-----记下当前第一个bi的下标
for(i=l;i<=n-1;i++)
{
k=i;
for(j=k+1;j<=n;j++)
if(s[k].b
swap(s[i].index,s[k].index);//-----只移动index和tag
swap(s[i].tag,s[k].tag);}
}
2.
voidbinarysearchtree(inta[],intb[],intn,int**m,int**s,int**w)
{
inti,j,k,t,l;
for(i=1;i<=n+1;i++)
{w[i][i-1]=a[i-1];
m[i][i-1]=0;}
for(l=0;l<=n-1;l++)//----l是下标j-i的差
for(i=1;i<=n-l;i++)
{j=i+l;
w[i][j]=w[i][j-1]+a[j]+b[j];
m[i][j]=m[i][i-1]+m[i+1][j]+w[i][j];
s[i][j]=i;
for(k=i+1;k<=j;k++)
{t=m[i][k-1]+m[k+1][j]+w[i][j];
if(t {m[i][j]=t; s[i][j]=k; } } } } 一、填空题(本题15分,每小题1分) 1、算法就是一组有穷的程序规则,它们规定了解决某一特定类型问题的方法和过程一系列运算。 2、在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。 3个基本计算模型是顺序结构随机存取机RAM、循环结构随机存取存储程序机RASP、条件结构图灵机TM。 3、算法的复杂性是时间资源和空间资源算法效率的度量,是评价算法优劣的重要依据。 4、计算机的资源最重要的是时间和空间资源。 因而,算法的复杂性有时间复杂性和空间复杂性之分。 5、f(n)=6×2n+n2,f(n)的渐进性态f(n)=O( 2n ) 6、贪心算法总是做出在当前看来最优的选择。 也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优选择。 7、许多可以用贪心算法求解的问题一般具有2个重要的性质: 最优子结构性质和贪心选择性质。 二、简答题(本题25分,每小题5分) 1、简单描述分治法的基本思想。 1、答: 分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题相互独立且与原问题相同。 递归地解这些子问题,然后将个子问题的解合并得到原问题的解。 2、简述动态规划方法所运用的最优化原理。 2、答: 在动态规划中,不管子问题以后是否被用到,只要它被计算过,就将其结果填入表中。 3、何谓最优子结构性质? 3、答: 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。 问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 4、简单描述回溯法基本思想。 4、答: 回溯法是一个既带有系统性又带有跳跃性的搜索算法,用其解决问题时,应明确定义问题的解空间。 确定解空间的组织结构后,回溯法从开始结点(根结点)出发,以深度优先方式搜索整个解空间。 这个开始结点成为活结点,同时也成为当前的扩展结点。 在当前扩展结点处,搜索向纵深方向移至一个新结点。 这个新结点成为新的活结点,并成为当前的扩展结点。 如果在当前扩展结点处不能在向纵深方向移动,则当前扩展结点就成为死结点。 此时,应往回移动(回溯)至最近的活结点处,并使这个活结点成为当前扩展结点。 回溯法以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已无活结点为止。 5、何谓P、NP、NPC问题 5、答: P(Polynomial问题): 也即是多项式复杂程度的问题。 NP就是Non-deterministic Polynomial的问题,也即是多项式复杂程度的非确定性问题。 NPC(NPComplete)问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题。 三、算法填空(本题20分,每小题5分) 1、n后问题回溯算法 (1)用二维数组A[N][N]存储皇后位置,若第i行第j列放有皇后,则A[i][j]为非0值,否则值为0。 (2)分别用一维数组M[N]、L[2*N-1]、R[2*N-1]表示竖列、左斜线、右斜线是否放有棋子,有则值为1,否则值为0。 for(j=0;j if (1)/*安全检查*/ {A[i][j]=i+1;/*放皇后*/ 2; if(i==N-1)输出结果; else3;;/*试探下一行*/ 4;/*去皇后*/ 5;; } 2、数塔问题。 有形如下图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一起走到底层,要求找出一条路径,使路径上的值最大。 for(r=n-2;r>=0;r--)//自底向上递归计算 for(c=0;1;c++) if(t[r+1][c]>t[r+1][c+1])2; else3; 3、Hanoi算法 Hanoi(n,a,b,c) if(n==1)1; else {2; 3; Hanoi(n-1,b,a,c); } 4、Dijkstra算法求单源最短路径 d[u]: s到u的距离p[u]: 记录前一节点信息 Init-single-source(G,s) foreachvertexv∈V[G] do{d[v]=∞;1} d[s]=0 Relax(u,v,w) ifd[v]>d[u]+w(u,v) then{d[v]=d[u]+w[u,v]; 2 } dijkstra(G,w,s) 1.Init-single-source(G,s) 2.S=Φ 3.Q=V[G] 4.whileQ<>Φ dou=min(Q) S=S∪{u} foreachvertex3 do4 四、算法理解题(本题10分) 根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树。 要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起。 五、算法理解题(本题5分) 设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表: ①每个选手必须与其他n-1名选手比赛各一次; ②每个选手一天至多只能赛一次; ③循环赛要在最短时间内完成。 (1)如果n=2k,循环赛最少需要进行几天; (2)当n=23=8时,请画出循环赛日程表。 六、算法设计题(本题15分) 分别用贪心算法、动态规划法、回溯法设计0-1背包问题。 要求: 说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间。 七、算法设计题(本题10分) 通过键盘输入一个高精度的正整数n(n的有效位数≤240),去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数。 编程对给定的n和s,寻找一种方案,使得剩下的数字组成的新数最小。 【样例输入】 178543 S=4 【样例输出】 13 答案: 一、填空题(本题15分,每小题1分) 1.规则一系列运算 2.随机存取机RAM(RandomAccessMachine);随机存取存储程序机RASP(RandomAccessStoredProgramMachine);图灵机(TuringMachine) 3. 算法效率 4. 时间 、空间、时间复杂度、 空间复杂度 5.2n 6. 最好局部最优选择 7.贪心选择最优子结构 二、简答题(本题25分,每小题5分) 6、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解。 如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。 7、“最优化原理”用数学化的语言来描述: 假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 8、某个问题的最优解包含着其子问题的最优解。 这种性质称为最优子结构性质。 9、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点。 搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程。 在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造。 10、P(Polynomial问题): 也即是多项式复杂程度的问题。 NP就是Non-deterministic Polynomial的问题,也即是多项式复杂程度的非确定性问题。 NPC(NPComplete)问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题。 三、算法填空(本题20分,每小题5分) 1、n后问题回溯算法 (1)! M[j]&&! L[i+j]&&! R[i-j+N] (2)M[j]=L[i+j]=R[i-j+N]=1; (3)try(i+1,M,L,R,A) (4)A[i][j]=0 (5)M[j]=L[i+j]=R[i-j+N]=0 2、数塔问题。 (1)c<=r (2)t[r][c]+=t[r+1][c] (3)t[r][c]+=t[r+1][c+1] 3、Hanoi算法 (1)move(a,c) (2)Hanoi(n-1,a,c,b) (3)Move(a,c) 4、 (1)p[v]=NIL (2)p[v]=u (3)v∈adj[u] (4)Relax(u,v,w) 四、算法理解题(本题10分) 12345678 21436587 34127856 43218765 56781234 65872143 78563412 87654321 五、 (1)8天(2分); (2)当n=23=8时,循环赛日程表(3分)。 六、算法设计题(本题15分) (1)贪心算法O(nlog(n)) Ø首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。 若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。 依此策略一直地进行下去,直到背包装满为止。 Ø具体算法可描述如下: voidKnapsack(intn,floatM,floatv[],floatw[],floatx[]) {Sort(n,v,w); inti; for(i=1;i<=n;i++)x[i]=0; floatc=M; for(i=1;i<=n;i++) {if(w[i]>c)break; x[i]=1; c-=w[i]; } if(i<=n)x[i]=c/w[i]; } (2)动态规划法O(nc) m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。 由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式如下。 voidKnapSack(intv[],intw[],intc,intn,intm[][11]) {intjMax=min(w[n]-1,c); for(j=0;j<=jMax;j++)/*m(n,j)=00= m[n][j]=0; for(j=w[n];j<=c;j++)/*m(n,j)=v[n]j>=w[n]*/ m[n][j]=v[n]; for(i=n-1;i>1;i--) {intjMax=min(w[i]-1,c); for(j=0;j<=jMax;j++)/*m(i,j)=m(i+1,j)0= m[i][j]=m[i+1][j]; for(j=w[i];j<=c;j++)/*m(n,j)=v[n]j>=w[n]*/ m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]); } m[1][c]=m[2][c]; if(c>=w[1]) m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]); } (3)回溯法O(2n) cw: 当前重量cp: 当前价值bestp: 当前最优值 void backtrack(int i) //回溯法 i初值1 { if(i > n)//到达叶结点 {bestp = cp; return; } if(cw + w[i] <= c)//搜索左子树 { cw += w[i]; cp += p[i]; backtrack(i+1); cw -= w[i]; cp -= p[i]; } if(Bound(i+1)>bestp) //搜索右子树 backtrack(i+1); } 七、算法设计题(本题10分) 为了尽可能地逼近目标,我们选取的贪心策略为: 每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符。 然后回到串首,按上述规则再删除下一个数字。 重复以上过程s次,剩下的数字串便是问题的解了。 具体算法如下: 输入s,n; while(s>0) {i=1;//从串首开始找 while(i {i++;} delete(n,i,1);//删除字符串n的第i个字符 s--; } while(length(n)>1)&&(n[1]=‘0’) delete(n,1,1);//删去串首可能产生的无用零 输出n;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 算法 设计 分析 考试题 自测