SBR污水处理技术共16页.docx
- 文档编号:12571728
- 上传时间:2023-04-20
- 格式:DOCX
- 页数:11
- 大小:22.85KB
SBR污水处理技术共16页.docx
《SBR污水处理技术共16页.docx》由会员分享,可在线阅读,更多相关《SBR污水处理技术共16页.docx(11页珍藏版)》请在冰豆网上搜索。
SBR污水处理技术共16页
SBR污水处理技术
2019-4-1 13:
53
SBR是序列间歇式活性污泥法(SequencingBatchReactorActivatedSludgeProcess)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
正是SBR工艺这些特殊性使其具有以下优点:
1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围
由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。
就近期的技术条件,SBR系统更适合以下情况:
1)中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2)需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3)水资源紧缺的地方。
SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
4)用地紧张的地方。
5)对已建连续流污水处理厂的改造等。
6)非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。
SBR设计要点、主要参数
SBR设计要点
1、运行周期(T)的确定
SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。
充水时间(tv)应有一个最优值。
如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。
当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。
充水时间一般取1~4h.反应时间(tR)是确定SBR反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。
对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。
一般在2~8h.沉淀排水时间(tS+D)一般按2~4h设计。
闲置时间(tE)一般按2h设计。
一个周期所需时间tC≥tR﹢tS﹢tD周期数n﹦24/tC
2、反应池容积的计算
假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n?
N.各反应池的容积为:
V:
各反应池的容量1/m:
排出比n:
周期数(周期/d)
N:
每一系列的反应池数量q:
每一系列的污水进水量(设计最大日污水量)(m3/d)
3、曝气系统
序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD.
在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。
常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。
4、排水系统
上清液排除出装置应能在设定的排水时间内,活性污泥不发生上浮的情况下排出上清液,排出方式有重力排出和水泵排出。
为预防上清液排出装置的故障,应设置事故用排水装置。
在上清液排出装置中,应设有防浮渣流出的机构。
序批式活性污泥的排出装置在沉淀排水期,应排出与活性污泥分离的上清液,并且具备以下的特征:
1)应能既不扰动沉淀的污泥,又不会使污泥上浮,按规定的流量排出上清液。
(定量排水)
2)为获得分离后清澄的处理水,集水机构应尽量靠近水面,并可随上清液排出后的水位变化而进行排水。
(追随水位的性能)
3)排水及停止排水的动作应平稳进行,动作准确,持久可靠。
(可靠性)
排水装置的结构形式,根据升降的方式的不同,有浮子式、机械式和不作升降的固定式。
5、排泥设备
设计污泥干固体量=设计污水量×设计进水SS浓度×污泥产率/1000在高负荷运行(0.1~0.4kg-BOD/kg-ss?
d)时污泥产量以每流入1kgSS产生1kg计算,在低负荷运行(0.03~0.1kg-BOD/kg-ss?
d)时以每流入1kgSS产生0.75kg计算。
在反应池中设置简易的污泥浓缩槽,能够获得2~3%的浓缩污泥。
由于序批式活性污泥法不设初沉池,易流入较多的杂物,污泥泵应采用不易堵塞的泵型。
SBR设计主要参数
序批式活性污泥法的设计参数,必须考虑处理厂的地域特性和设计条件(用地面积、维护管理、处理水质指标等)适当的确定。
用于设施设计的设计参数应以下值为准:
项目参数BOD-SS负荷(kg-BOD/kg-ss?
d)0.03~0.4MLSS(mg/l)1500~5000排出比(1/m)1/2~1/6安全高度ε(cm)(活性污泥界面以上的最小水深)50以上
序批式活性污泥法是一种根据有机负荷的不同而从低负荷(相当于氧化沟法)到高负荷(相当于标准活性污泥法)的范围内都可以运行的方法。
序批式活性污泥法的BOD-SS负荷,由于将曝气时间作为反应时间来考虑,定义公式如下:
QS:
污水进水量(m3/d)
CS:
进水的平均BOD5(mg/l)
CA:
曝气池内混合液平均MLSS浓度(mg/l)
V:
曝气池容积e:
曝气时间比e=n?
TA/24n:
周期数TA:
一个周期的曝气时间
序批式活性污泥法的负荷条件是根据每个周期内,反应池容积对污水进水量之比和每日的周期数来决定,此外,在序批式活性污泥法中,因池内容易保持较好的MLSS浓度,所以通过MLSS浓度的变化,也可调节有机物负荷。
进一步说,由于曝气时间容易调节,故通过改变曝气时间,也可调节有机物负荷。
在脱氮和脱硫为对象时,除了有机物负荷之外,还必须对排出比、周期数、每日曝气时间等进行研究。
在用地面积受限制的设施中,适宜于高负荷运行,进水流量小负荷变化大的小规模设施中,最好是低负荷运行。
因此,有效的方式是在投产初期按低负荷运行,而随着水量的增加,也可按高负荷运行。
不同负荷条件下的特征有机物负荷条件(进水条件)高负荷运行低负荷运行间歇进水间歇进水、连续运行条件BOD-SS负荷(kg-BOD/kg-ss?
d)0.1~0.40.03~0.1周期数大(3~4)小(2~3)
排出比大小处理特性有机物去除处理水BOD<20mg/l去除率比较高脱氮较低高脱磷高较低污泥产量多少维护管理抗负荷变化性能比低负荷差对负荷变化的适应性强,运行的灵活性强用地面积反应池容积小,省地反应池容积较大适用范围能有效地处理中等规模以上的污水,适用于处理规模约为2000m3/d以上的设施适用于小型污水处理厂,处理规模约为2000m3/d以下,适用于不需要脱氮的设施
SBR设计需特别注意的问题
(一)主要设施与设备
1、设施的组成
本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。
但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。
2、反应池
反应池的形式为完全混合型,反应池十分紧凑,占地很少。
形状以矩形为准,池宽与池长之比大约为1:
1~1:
2,水深4~6米。
反应池水深过深,基于以下理由是不经济的:
①如果反应池的水深大,排出水的深度相应增大,则固液分离所需的沉淀时间就会增加。
②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。
反应池水深过浅,基于以下理由是不希望的:
①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。
②与其他相同BOD-SS负荷的处理方式相比,其优点是用地面积较少。
反应池的数量,考虑清洗和检修等情况,原则上设2个以上。
在规模较小或投产初期污水量较小时,也可建一个池。
3、排水装置
排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。
目前,国内外报道的SBR排水装置大致可归纳为以下几种:
⑴潜水泵单点或多点排水。
这种方式电耗大且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开启阀门。
缺点操作不方便,排水容易带泥;⑶专用设备滗水器。
滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。
理想的排水装置应满足以下几个条件:
①单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备坚固耐用且排水量可无级调控,自动化程度高。
在设定一个周期的排水时间时,必须注意以下项目:
①上清液排出装置的溢流负荷——确定需要的设备数量;
②活性污泥界面上的最小水深——主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小;
③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大;
④在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始排水符合SBR法的运行原理。
SBR工艺的需氧与供氧
SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。
由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。
随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。
从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。
SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些。
SBR工艺排出比(1/m)的选择
SBR工艺排出比(1/m)的大小决定了SBR工艺反应初期有机物浓度的高低。
排出比小,初始有机物浓度低,反之则高。
根据微生物降解有机物的规律,当有机物浓度高时,有机物降解速率大,曝气时间可以减少。
但是,当有机物浓度高时,耗氧速率也大,供氧与耗氧的矛盾可能更大。
此外,不同的废水活性污泥的沉降性能也不同。
污泥沉降性能好,沉淀后上清液就多,宜选用较小的排出比,反之则宜采用较大的排出比。
排出比的选择还与设计选用的污泥负荷率、混合液污泥浓度等有关。
SBR反应池混合液污泥浓度
根据活性污泥法的基本原理,混合液污泥浓度的大小决定了生化反应器容积的大小。
SBR工艺也同样如此,当混合液污泥浓度高时,所需曝气反应时间就短,SBR反应池池容就小,反之SBR反应池池容则大。
但是,当混合液污泥浓度高时,生化反应初期耗氧速率增大,供氧与耗氧的矛盾更大。
此外,池内混合液污泥浓度的大小还决定了沉淀时间。
污泥浓度高需要的沉淀时间长,反之则短。
当污泥的沉降性能好,排出比小,有机物浓度低,供氧速率高,可以选用较大的数值,反之则宜选用较小的数值。
SBR工艺混合液污泥浓度的选择应综合多方面的因素来考虑。
关于污泥负荷率的选择
污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池最终出水有机物浓度的高低。
当要求的出水有机物浓度低时,污泥负荷率宜选用低值;当废水易于生物降解时,污泥负荷率随着增大。
污泥负荷率的选择应根据废水的可生化性以及要求的出水水质来确定。
SBR工艺与调节、水解酸化工艺的结合
SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均衡水质、水量的作用。
通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。
在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。
反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。
具体操作方式如下所述:
进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制;
进水结束通过液位控制,整个进水时间可能是变化的。
水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在最小流量下充满SBR反应池所需的时间。
曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。
沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。
排水时间由滗水器的性能决定,滗水结束可以通过液位控制。
闲置期的时间选择是调节、水解酸化及SBR工艺结合好坏的关键。
闲置时间的长短应根据废水的变化情况来确定,实际运行中,闲置时间经常变动。
通过闲置期间的调整,将SBR反应池的进水合理安排,使整个系统能正常运转,避免整个运行过程的紊乱。
SBR调试程序及注意事项
(一)活性污泥的培养驯化
SBR反应池去除有机物的机理与普通活性污泥法基本相同,主要大量繁殖的微生物群体降解污水中的有机物。
活性污泥处理系统在正式投产之前的首要工作是培养和驯化活性污泥。
活性污泥的培养驯化可归纳为异步培驯法、同步培驯法和接种培驯法,异步法为先培养后驯化,同步法则培养和驯化同时进行或交替进行,接种法系利用其他污水处理厂的剩余污泥,再进行适当的培驯。
培养活性污泥需要有菌种和菌种所需要的营养物。
对于城市污水,其中的菌种和营养都具备,可以直接进行培养。
对于工业废水,由于其中缺乏专性菌种和足够的营养,因此在投产时除用一般的菌种和所需要营养培养足够的活性污泥外,还应对所培养的活性污泥进行驯化,使活性污泥微生物群体逐渐形成具有代谢特定工业废水的酶系统,具有某种专性。
(二)试运行
活性污泥培养驯化成熟后,就开始试运行。
试运行的目的使确定最佳的运行条件。
在活性污泥系统的运行中,影响因素很多,混合液污泥浓度、空气量、污水量、污水的营养情况等。
活性污泥法要求在曝气池内保持适宜的营养物与微生物的比值,供给所需要的氧,使微生物很好的和有机物相接触,全体均匀的保持适当的接触时间。
对SBR处理工艺而言,运行周期的确定还与沉淀、排水排泥时间及闲置时间有关,还和处理工艺中所设计的SBR反应器数量有关。
运行周期的确定除了要保证处理过程中运行的稳定性和处理效果外,还要保证每个池充水的顺序连续性,即合理的运行周期应满足运行过程中避免两个或两个以上的池子同时进水或第一个池子和最后一个池子进水脱节的现象。
同时通过改变曝气时间和排水时间,对污水进行不同的反应测试,确定最佳的运行模式,达到最佳的出水水质、最经济的运行方式。
(三)污泥沉降性能的控制
活性污泥的良好沉降性能是保证活性污泥处理系统正常运行的前提条件之一。
如果污泥的沉降性能不好,在SBR的反应期结束后,污泥难以沉淀,污泥的压密性差,上层清液的排除就受到限制,水泥比下降,导致每个运行周期处理污水量下降。
如果污泥的絮凝性能差,则出水中的悬浮固体(SS)含量将升高,COD上升,导致处理出水水质的下降。
导致污泥沉降性能恶化的原因是多方面的,但都表现在污泥容积指数(SVI)的升高。
SBR工艺中由于反复出现高浓度基质,在菌胶团菌和丝状菌共存的生态环境中,丝状菌一般是不容易繁殖的,因而发生污泥丝状菌膨胀的可能性是非常低的。
SBR较容易出现高粘性膨胀问题。
这可能是由于SBR法是一个瞬态过程,混合液内基质逐步降解,液相中基质浓度下降了,但并不完全说明基质已被氧化去除,加之许多污水的污染物容易被活性污泥吸附和吸收,在很短的时间内,混合液中的基质浓度可降至很低的水平,从污水处理的角度看,已经达到了处理效果,但这仅仅是一种相的转移,混合液中基质的浓度的降低仅是一种表面现象。
可以认为,在污水处理过程中,菌胶团之所以形成和有所增长,就要求系统中有一定数量的有机基质的积累,在胞外形成多糖聚合物(否则菌胶团不增长甚至出现细菌分散生长现象,出水浑浊)。
在实际操作过程中往往会因充水时间或曝气方式选择的不适当或操作不当而使基质的积累过量,致使发生污泥的高粘性膨胀。
污染物在混合液内的积累是逐步的,在一个周期内一般难以马上表现出来,需通过观察各运行周期间的污泥沉降性能的变化才能体现出来。
为使污泥具有良好的沉降性能,应注意每个运行周期内污泥的SVI变化趋势,及时调整运行方式以确保良好的处理效果。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SBR 污水处理 技术 16