完整版基于单片机温度控制系统毕业设计论文.docx
- 文档编号:12510305
- 上传时间:2023-04-19
- 格式:DOCX
- 页数:38
- 大小:120.39KB
完整版基于单片机温度控制系统毕业设计论文.docx
《完整版基于单片机温度控制系统毕业设计论文.docx》由会员分享,可在线阅读,更多相关《完整版基于单片机温度控制系统毕业设计论文.docx(38页珍藏版)》请在冰豆网上搜索。
完整版基于单片机温度控制系统毕业设计论文
摘要
近年来随着计算机在社会领域的渗透,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及具体应用对象特点的软件结合,以作完善。
本文从硬件和软件两方面来讲述室温自动控制过程,在控制过程中主要应用AT89C51、LED显示器,而主要是通过DS18B20数字温度传感器采集环境温度,以单片机为核心控制部件,并通过四位数码管显示实时温度的一种数字温度计。
软件方面采用C语言来进行程序设计,使指令的执行速度快,节省存储空间。
为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了,使硬件在软件的控制下协调运作。
而系统的过程则是:
首先,通过设置按键,设定恒温运行时的温度值,并且用数码管显示这个温度值.然后,在运行过程中将采样的温度模拟量送入AD转换器中进行模拟-数字转换,再将转换后的数字量用数码管进行显示,最后用单片机来控制加热器,进行加热或停止加热,直到能在规定的温度下恒温加热。
关键词:
单片机系统;传感器;数据采集;模数转换器;温度
Abstract
Inrecentyears,withthecomputerpenetrationinthesocialfield,theapplicationofSCMistokeepatthesametime,traditionalcontroltestingupdateonCrescentbenefits.Inreal-timedetectionandautomaticcontrolsystemofsingle-chipapplications,oftenasasingle-chipcorecomponenttouseonlysingle-chipisnotenoughknowledge,butalsothespecificsoftwareobjectscombinetomakeperfect.
Inthispaper,boththeprocess,inthecontrolofthemainapplicationoftheprocessofAT89C51,ADC0809,LEDdisplay,LM324comparator,butmainlythroughthedigitaltemperaturesensorDS18B20collectingambienttemperaturetosingle-chipmicrocomputerasthecorecontrolcomponents,andthroughfourreal-timedigitaldisplayofadigitalthermometertemperature.Softwareusingassemblylanguageforprogramming,sothattheimplementationofDirectivespeed,tosavestoragespace.Inordertofacilitatetheexpansionandchangestothedesignofmodularsoftwarestructure,sothatthelogicoftherelationshipbetweenprogramdesignmoreconcise,Hardwaresoftwareco-operationunderthecontrolofit.
Andsystematicprocessis:
Firstofall,bysettingthebutton,setthethermostattemperatureatthetimeofoperation,anddigitaldisplayofthetemperature.Then,intherunningtemperatureoftheprocessofsamplinganalogintotheADconverterinthesimulation-digitalconverter,andthenconverteddigitalcontrolwithdigitaldisplay,thelastsingle-chipmicrocomputertocontrolthetheprovisionsundertheconstanttemperature;ADC;Temperature
第1章绪论1
1.1课题的背景及其意义1
1.2课题研究的内容及要求2
1.3课题的研究方案3
第2章设计理论基础6
2.1单片机的发展概况6
2.2AT89C51系列单片机介绍7
2.2.1AT89C51系列基本组成及特性7
2.2.2AT89C51系列引脚功能8
2.2.3AT89C51系列单片机的功能单元11
2.3ADC0809模数转换器14
2.4运算放大器LM32416
2.5移位寄存器74LS16418
2.6数码显示管LED19
2.7数字温度计DS18S2020
第3章硬件电路设计21
3.1单片机控制单元21
3.2温度采样部分21
3.3模数转换部分23
3.3.1模数转换技术23
3.3.2积分型模数转换器24
3.4显示部分24
3.5调节执行单元25
第4章软件设计28
4.1主程序流程图28
4.2中断子程序流程图29
4.3按键流程图30
4.4显示流程图31
第5章系统调试及结论分析32
5.1硬件调试32
5.1.1硬件电路故障及解决方法32
5.1.2硬件调试方法33
5.2软件调试33
5.2.1软件电路故障及解决方法33
5.2.2软件调试方法34
5.3结论分析35
第6章总结与展望36
6.1总结36
6.2展望37
参考文献38
致谢39
附录40
1.系统总程序清单40
2.系统的原理图49
3.外文资料原文50
4.外文资料译文54
第1章绪论
1.1课题的背景及其意义
二十一世纪是科技高速发展的信息时代,电子技术、微型单片机技术的应用更是空前广泛,伴随着科学技术和生产的不断发展,需要对各种参数进行温度测量。
因此温度一词在生产生活之中出现的频率日益增多,与之相对应的,温度控制和测量也成为了生活生产中频繁使用的词语,同时它们在各行各业中也发挥着重要的作用。
如在日趋发达的工业之中,利用测量与控制温度来保证生产的正常运行。
在农业中,用于保证蔬菜大棚的恒温保产等。
温度是表征物体冷热程度的物理量,温度测量则是工农业生产过程中一个很重要而普遍的参数。
温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。
由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位。
而且随着科学技术和生产的不断发展,温度传感器的种类还是在不断增加丰富来满足生产生活中的需要。
在单片机温度测量系统中的关键是测量温度、控制温度和保持温度,温度测量是工业对象中主要的被控参数之一。
因此,单片机温度测量则是对温度进行有效的测量,并且能够在工业生产中得到了广泛的应用,尤其在电力工程、化工生产、机械制造、冶金工业等重要工业领域中,担负着重要的测量任务。
在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。
但温度是一个模拟量,如果采用适当的技术和元件,将模拟的温度量转化为数字量虽不困难,但电路较复杂,成本较高。
1.2课题研究的内容及要求
我本次的毕业设计的题目是单片机水温控制系统设计。
它是多种技术知识的结合,不仅涉及到软件的设计,而且还将应用电子技术与单片机的应用技术有机结合,使其具有精度高、测量误差小、稳定性好等特点。
电路板的设计技术和机械加工工艺的巧妙结合,使其具备了显示直观、体积做工精细等特点,能为它在其它领域的广泛应用打下良好的基础。
因为经过我们调查发现许多应用场合原来就有测温控温仪器,只是随着对生产质量与生产需要的要求在不断地提高,以往的那些测温控温的仪器根本不能满足现在的要求。
其中,有部分应用场合对精度提高的幅度要求也不是特别高。
因此,为了提高性价比,我所设计的系统提出在原有系统的基础上进行一些简单的改良,以此为出发点,主要阐述的是水温自动控制系统的一种实现方法。
1.课题的主要研究的内容
本文所要研究的课题是基于单片机控制的水温控制系统的设计,主要是介绍了对水箱温度的显示、控制及报警,实现了温度的实时显示及控制。
水箱水温控制部分,提出了用DS18S20、AT89C51单片机及LED的硬件电路完成对水温的实时检测及显示,利用DS18S20与单片机连接由软件与硬件电路配合来实现对加热电阻丝的实时控制及超出设定的上下限温度的报警系统。
而炉内温度控制部分,采用一套PID闭环负反馈控制系统,由DS18S20检测炉内温度,用中值滤波的方法取一个值存入程序存取器内部一个单元作为最后检测信号,并在LED中显示。
控制器是用89C51单片机,用PID算法对检测信号和设定值的差值进行调节后输出控制信号给执行机构,去调节电阻炉的加热功率,从而控制炉内温度。
它具有微型化、低功耗、高性能、抗干扰能力强、易配微处理器等优点,特别适合于构成多点的温度测控系统,可直接将温度转化成串行数字信号供微机处理,而且每片DS18S20都有唯一的产品号,可以一并存入其ROM中,以便在构成大型温度测控系统时在单线上挂接任意多个DS18S20芯片。
从DS18S20读出或写入DS18S20信息仅需要一根口线,其读写及其温度变换功率来源于数据总线,该总线本身也可以向所挂接的DS18S20供电,而且不需要额外电源。
同时DS18S20能提供九位温度读数,它无需任何外围硬件即可方便地构成温度检测系统。
而且利用本次的设计主要实现温度测试,温度显示,温度门限设定,超过设定的门限值时自动启动加热装置等功能。
而且还要以单片机为主机,使温度传感器通过一根口线与单片机相连接,再加上温度控制部分和人机对话部分来共同实现温度的监测与控制。
2.用单片机实现其具体控制功能如下:
(1)能够连续测量水的温度值,用十进制数码管来显示水的实际温度。
(2)能够设定水的温度值,设定范围是30℃~90℃。
(3)能够实现水温的自动控制,如果设定水温为85℃,则能使水温保持恒定在85℃的温度下运行。
(4)用单片机AT89C51控制,通过按键来控制水温的设定值,数值采用数码管显示。
1.3课题的研究方案
温度控制系统是比较常见和典型的过程控制系统。
温度是工业生产过程中重要的被控参数之一,当今计算机控制技术在这方面的应用,已使温度控制系统达到自动化、智能化,比过去单纯采用电子线路进行PID调节的控制效果要好得多,可控性方面也有了很大的提高。
温度是一个非线性的对象,具有大惯性的特点,在低温段惯性较大,在高温段惯性较小。
对于这种温控对象,一般认为其具有以下的传递函数形式:
(1-1)
1.方案一(见图1-1)
图1-1方案一的图
此方案是传统的一位式模拟控制方案,选用模拟电路,用电位器设定值,反馈的温度值和设定值比较后,决定加热或不加热。
其特点是电路简单,易于实现,但是系统所得结果的精度不高并且调节动作频繁,系统静态差大、不稳定。
系统受环境影响大,不能实现复杂的控制算法,不能用数码管显示,不能用键盘设定。
2.方案二(见图1-2)
图1-2方案二的图
此方案是传统的二位式模拟控制方案,其基本思想与方案一相同,但由于采用上下限比较电路,所以控制精度有所提高。
这种方法还是模拟控制方式,因此也不能实现复杂的控制算法使控制精度做得较高,而且不能用数码管显示,对键盘进行设定。
3.方案三(见图1-3)
图1-3方案三的图
此方案采用89C51单片机系统来实现。
单片机软件编程灵活、自由度大,可用软件编程实现各种控制算法和逻辑控制。
单片机系统可以用数码管来显示水温的实际值,能用键盘输入设定值。
本方案选用了AT89C51芯片,不需要外扩展存储器,可使系统整体结构更为简单。
结论:
前两种方案是传统的模拟控制方式,而模拟控制系统难以实现复杂的控制规律,控制方案的修改也较为繁琐。
而方案三是采用以单片机为控制核心的控制系统,尤其对温度控制,可达到模拟控制所达不到的效果,并且实现显示和键盘设定功能,大大提高了系统的智能化。
也使得系统所测得结果的精度大大提高。
所以,经过对三种方案的比较,本次毕业设计采用了方案三。
第2章设计理论基础
本设计系统的基本组成单元包括:
主机、温度采样单元、单片机控制单元、调节执行单元四部分,本章将逐一进行介绍。
2.1单片机的发展概况
1970年微型计算机研制成功之后,随之即出现了单片机(即单片微型计算机)—美国Intel公司1971年生产的4位单片机4004和1972年生产的雏形8位单片机8008,这也算是单片机的第一次公众亮相。
1976年Intel公司首先推出能称为单片机的MCS-48系列单片微型计算机。
它以体积小、功能全、价格低等特点,赢得了广泛的应用,同时一些与单片机有关公司都争相推出各自的单片机。
1978年下半年Motorola公司推出M6800系列单片机,Zilog公司相继推出Z8单片机系列。
1980年Intel公司在MCS-48系列基础上又推出高性能的MCS-51系列单片机。
这类单片机均带有串行IO口,定时器计数器为16位,片内存储容量(RAM,ROM)都相应增大,并有优先级中断处理功能,单片机的功能、寻址范围都比早期的扩大了,它们是当时单片机应用的主流产品。
1982年Mostek公司和Intel公司先后又推出了性能更高的16位单片机MK68200和MCS-96系列,NS公司和NEC公司也分别在原有8位单片机的基础上推出了16位单片机HPC16040和μPD783××系列。
1987年Intel公司又宣布了性能比8096高两倍的CMOS型80C196,1988年推出带EPROM的87C196单片机。
由于16位单片机推出的时间较迟、价格昂贵、开发设备有限等多种原因,至今还未得到广泛应用。
而8位单片机已能满足大部分应用的需要,因此,在推出16位单片机的同时,高性能的新型8位单片机也不断问世。
纵观这短短的20年,经历了4次更新换代,单片机正朝着集成化、多功能、多选择、高速度、低功耗、扩大存储容量和加强IO功能及结构兼容的方向发展。
新一代的80C51系列单片机除了上述的结构特性外,其最主要的技特点是向外部接口电路扩展,以实现微控制器(microcontroller)完善的控制功能为己任。
这一系列单片机为外部提供了相当完善的总线结构,为系统的扩展和配置打下了良好的基础。
由于80C51系列单片机所具有的一系列优越的特点,获得广泛使用指日可待。
下面我们就来重点介绍一下本毕业论文讨论的系统所用的AT89C51系列单片机。
2.2AT89C51系列单片机介绍
2.2.1AT89C51系列基本组成及特性
AT89C51是一种带4k字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。
而在众多的51系列单片机中,要算ATMEL公司的AT89C51更实用,也是一种高效微控制器,因为它不但和8051指令、管脚完全兼容,而且其片内的4K程序存储器是FLASH工艺的,这种工艺的存储器,用户可以用电的方式达到瞬间擦除、改写。
而这种单片机对开发设备的要求很低,开发时间也大大缩短。
AT89C51基本功能描述如下:
AT89C51是一种低损耗、高性能、CMOS八位微处理器,而且在其片种还有4k字节的在线可重复编程快擦快写程序存储器,能重复写入擦除1000次,数据保存时间为十年。
它与MCS-51系列单片机在指令系统和引脚上完全兼容,不仅可完全代替MCS-51系列单片机,而且能使系统具有许多MCS-51系列产品没有的功能。
AT89C51可构成真正的单片机最小应用系统,缩小系统体积,增加系统的可靠性,降低了系统成本。
只要程序长度小于4k,四个IO口全部提供给用户。
可用5V电压编程,而且写入时间仅10毫秒,仅为875187C51的擦除时间的百分之一,与875187C51的12V电压擦写相比,不易损坏器件,没有两种电源的要求,改写时不拔下芯片,适合许多嵌入式控制领域。
AT89C51芯片提供三级程序存储器锁定加密,提供了方便灵活而可靠的硬加密手段,能完全保证程序或系统不被仿制。
另外,AT89C51还具有MCS-51系列单片机的所有优点。
128×8位内部RAM,32位双向输入输出线,两个十六位定时器计时器,5个中断源,两级中断优先级,一个全双工异步串行口及时钟发生器等。
AT89C51有间歇、掉电两种工作模式。
间歇模式是由软件来设置的,当外围器件仍然处于工作状态时,CPU可根据工作情况适时地进入睡眠状态,内部RAM和所有特殊的寄存器值将保持不变。
这种状态可被任何一个中断所终止或通过硬件复位。
掉电模式是VCC电压低于电源下限,当振荡器停止振动时,CPU停止执行指令。
该芯片内RAM和特殊功能寄存器值保持不变,一直到掉电模式被终止。
只有VCC电压恢复到正常工作范围而且在振荡器稳定振荡后,通过硬件复位、掉电模式可被终止。
2.2.2AT89C51系列引脚功能
AT89C51有40引脚双列直插(DIP)形式。
其与80C51引脚结构基本相同,其逻辑引脚图如图2-1。
图2-1AT89C51逻辑引脚图
各引脚功能叙述如下:
1.电源和晶振
VCC——运行和程序校验时加+5V
GND——接地
XTAL1——输入到振荡器的反向放大器
XTAL2——反向放大器的输出,输入到内部时钟发生器
(当使用外部振荡器时,XTAL1接地,XTAL2接收振荡器信号)
RST:
复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALEPROG:
当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的16。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:
每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
2.IO(4个口,32根)
P0口——8位、漏极开路的双向IO口。
当使用片外存储器(ROM、RAM)时,作地址和数据分时复用。
在程序校验期间,输出指令字节(需加外部上拉电路)。
P0口(作为总线时)能驱动8个LSTTL负载。
P1口——8位、准双向IO口。
在编程校验期间,用于输入低位字节地址。
P1口可驱动4个LSTTL负载。
对于80C51,P1.0——T2,是定时器的计数端且位输入;P1.1——T2EX,是定时器的外部输入端。
这时,读两个特殊输入引脚的输出锁存器应由程序置1。
P2口——8位、准双向IO口。
当使用片外存储器(ROM及RAM)时,输出高8位地址。
在编程校验期间,接收高位字节地址。
P2口可以驱动4个LSTTL负载。
P3口——8位、准双向IO口,具有内部上拉电路。
P3口提供各种替代功能。
在提供这些功能时,其输出锁存器应由程序置1。
P3口可以输入输出4个LSTTL负载。
3.串行口
P3.0——RXD(串行输入口),输入。
P3.1——TXD(串行输出口),输出。
4.中断
P3.2——INT0外部中断0,输入。
P3.3——INT1外部中断1,输入。
5.定时器计数器
P3.4——T0定时器计数器0的外部输入,输入。
P3.5——T1定时器计数器1的外部输入,输入。
6.数据存储器选通
P3.6——WR低电平有效,输出,片外存储器写选通。
P3.7——RD低电平有效,输出,片外存储器读选通。
7.控制线(共4根)
输入:
RST——复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
EAVpp——片外程序存储器访问允许信号,低电平有效。
在编程时,其上施加21V的编程电压。
注意:
在加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
输入、输出:
ALEPROG——地址锁存允许信号,输出。
ALE以16的振荡频率稳定速率输出,可用作对外输出的时钟或用于定时。
在EPROM编程期间,作输入,输入编程脉冲(PROG)。
ALE可以驱动8个LSTTL负载。
当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的16。
因此它可用作对外部输出的脉冲或用于定时目的。
注意:
每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
输出:
PSEN——片外程序存储器选通信号,低电平有效。
在从片外程序存储器取址期间,在每个机器周期中,当PSEN有效时,程序存储器的内容被送上P0口(数据总线)。
PSEN可以驱动8个LSTTL负载。
2.2.3AT89C51系列单片机的功能单元
1.并行IO接口:
单片机芯片内有一项主要功能就是并行IO口。
51系列共有4个8位的并行IO口,分别记作P0、P1、P2、P3每个口都包含一个锁存器,一个输出驱动器和输入缓冲器。
实际上,它们已被归入专用寄存器之列,并且具有字节寻址和位寻址功能。
在访问片外扩展存储器时,低八位地址和数据由P0口分时传送,高八位地址由P2口传送。
2.定时器计数器
定时器计数器(timercounter)是单片机中的重要部件,其工作方式灵活、编程简单,使用它对减轻CPU的负担和简化外围电路都大有好处。
C51系列包含有两个16位的可编程定时器计数器分别称为定时器计数器T0和定时器计数器T1;在C51部分产品中,还包含有一个用做看门狗的8位定时器。
定时器计数器的核心是一个加1计数引脚上施加器,其基本功能是加1功能。
在单片机的定时器T0或T1中,有一个定时器发生由0到1的跳变时,计数器增1,即为计数功能;在单片机内部对机器周期或其分频进行计数,从而得到定时,这就是定时功能。
在单片机中,定时功能和计数功能的设定和控制都是通过软件来进行的。
定时器计数器内部结构及其原理:
由定时器0、定时器1、定时器方式寄存器TMOD和定时器控制寄存器TCON组成。
当定时器计数器设置为定时工作方式时,计数器对内部机器周期计数,每过一个机器周期,计数器加1,直至计满溢出。
定时器的定时时间与系统的振荡频率紧密相关,因为C51系列单片机的一个机器周期由1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 基于 单片机 温度 控制系统 毕业设计 论文