人教版七年级整册数学课本知识点归纳完整版.docx
- 文档编号:12185106
- 上传时间:2023-04-17
- 格式:DOCX
- 页数:15
- 大小:32.75KB
人教版七年级整册数学课本知识点归纳完整版.docx
《人教版七年级整册数学课本知识点归纳完整版.docx》由会员分享,可在线阅读,更多相关《人教版七年级整册数学课本知识点归纳完整版.docx(15页珍藏版)》请在冰豆网上搜索。
人教版七年级整册数学课本知识点归纳完整版
人教版七年级上册数学课本知识点归纳
第1章 有理数
(一)正负数
1.正数:
大于0的数。
2.负数:
小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:
由整数和分数组成的数。
包括:
正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:
π)
2.整数:
正整数、0、负整数,统称整数。
3.分数:
正分数、负分数。
(三)数轴
1.数轴:
用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)
2.数轴的三要素:
原点、正方向、单位长度。
3.相反数:
只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:
正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:
同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:
a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:
(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a−b=a+(−b) 减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:
ab=ba
4.乘法结合律:
(ab)c=a(bc)
5.乘法分配律:
a(b+c)=ab+ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1.求n个相同因数的积的运算,叫做乘方。
写作an 。
(乘方的结果叫幂,a叫底数,n叫指数)
2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章 整式
(一)整式
1.整式:
单项式和多项式的统称叫整式。
2.单项式:
数与字母的乘积组成的式子叫单项式。
单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4。
次数:
一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:
几个单项式的和叫做多项式。
6.项:
组成多项式的每个单项式叫做多项式的项。
7.常数项:
不含字母的项叫做常数项。
8.多项式的次数:
多项式中,次数最高的项的次数叫做这个多项式的次数。
9.同类项:
多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:
把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减
整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:
把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
第三章 一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
(1)方程:
先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。
(2)
(二)一元一次方程。
1.一元一次方程:
方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
2.解:
求出的方程中未知数的值叫做方程的解。
(二)等式的性质
1.等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;
如果a=b,(c‡0),那么a∕c=b∕c。
(三)解方程的步骤
解一元一次方程的步骤:
去分母、去括号、移项、合并同类项,未知数系数化为1。
1.去分母:
把系数化成整数。
2.去括号
3.移项:
把等式一边的某项变号后移到另一边。
4.合并同类项
5.系数化为1
第四章 图形认识初步
一、图形认识初步
1.几何图形:
把从实物中抽象出来的各种图形的统称。
2.平面图形:
有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
3.立体图形:
有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
4.展开图:
有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.点,线,面,体
①图形是由点,线,面构成的。
②线与线相交得点,面与面相交得线。
③点动成线,线动成面,面动成体。
二、直线、线段、射线
1.线段:
线段有两个端点。
2.射线:
将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
3.直线:
将线段的两端无限延长就形成了直线。
直线没有端点。
4.两点确定一条直线:
经过两点有一条直线,并且只有一条直线。
5.相交:
两条直线有一个公共点时,称这两条直线相交。
6.两条直线相交有一个公共点,这个公共点叫交点。
7.中点:
M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8.线段的性质:
两点的所有连线中,线段最短。
(两点之间,线段最短)
9.距离:
连接两点间的线段的长度,叫做这两点的距离。
三、角
1.角:
有公共端点的两条射线组成的图形叫做角。
2.角的度量单位:
度、分、秒。
3.角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的度、分、秒是60进制。
4.角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②平角和周角:
一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。
平角等于180度。
周角等于360度。
直角等于90度。
③平分线:
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
④工具:
量角器、三角尺、经纬仪。
5.余角和补角
①余角:
两个角的和等于90度,这两个角互为余角。
即其中每一个是另一个角的余角。
②补角:
两个角的和等于180度,这两个角互为补角。
即其中一个是另一个角的补角。
③补角的性质:
等角的补角相等
④余角的性质:
等角的余角相等
人教版七年级下册数学课本知识点归纳
第五章 相交线与平行线
一、相交线两条直线相交,形成4个角。
1.邻补角:
两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:
∠1、∠2。
2.对顶角:
两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:
∠1、∠3。
3.对顶角相等。
二、垂线
1.垂直:
如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:
垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:
两条垂线的交点叫垂足。
4.垂线特点:
过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:
直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:
在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:
∠1和∠5。
2.内错角:
在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:
∠3和∠5。
3.同旁内角:
在在两条直线之间,又在直线EF的同侧,
具有这种位置关系的两个角叫同旁内角。
如:
∠3和∠6。
四、平行线
(一)平行线
1.平行:
两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)
2.平行公理:
经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:
①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
(二)平行线的判定:
1.同位角相等,两直线平行。
2.内错角相等,两直线平行。
3.同旁内角互补,两直线平行。
(三)平行线的性质
1.两条平行线被第三条直线所截,同位角相等。
2.两条平行线被第三条直线所截,内错角相等。
3.两条平行线被第三条直线所截,同旁内角互补。
4.两条平行线被第三条直线所截,外错角相等。
以上性质可简单说成:
1.两条直线平行,同位角相等。
2.两条直线平行,内错角相等。
3.两条直线平行,同旁内角互补。
(四)命题、定理
1.命题的概念:
判断一件事情的语句,叫做命题。
2.命题的组成:
每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果„„,那么„„”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
3.真命题:
正确的命题,题设是成立,结论一定成立。
4.假命题:
错误的命题,题设是成立,不能保证结论一定成立。
5.定理;经过推理证实得到的真命题。
(定理可以做为继续推理的依据)
(五)平移
1.平移:
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换(简称平移),平移不改变物体的形状和大小。
2.平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章 实数
一、算术平方根
1.算术平方根:
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作√a。
0的算术平方根为0;
2.平方根:
如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根(或二次方根)。
3.开平方:
求一个数a的平方根的运算(与平方互为逆运算)
4.平方根性质:
正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。
二、立方根
1.立方根:
如果一个数x的立方等于a,即x3=a,那么数x就叫做a的立方根(或三次方根)。
2.开立方:
求一个数a的立方根的运算(与立方互为逆运算)。
3.立方根性质:
正数的立方根是正数;负数的立方根是负数。
0的立方根是0;
三、实数
1.无理数:
无限不循环小数。
如:
π、√2、√3
2.实数:
有理数和无理数统称实数。
实数都可以用数轴上的点表示。
第七章 平面直角坐标系
一、平面直角坐标系
(一)有序数对
1.有序数对
用两个数来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2.坐标:
数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
(二)平面直角坐标系
1.平面直角坐标系:
在平面内画两条互相垂直,并且有公共原点的数轴。
这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2.X轴:
水平的数轴叫X轴或横轴。
向右方向为正方向。
3.Y轴:
竖直的数轴叫Y轴或纵轴。
向上方向为正方向。
4.原点:
两个数轴的交点叫做平面直角坐标系的原点。
5.在平面直角坐标系中对称点的特点:
①关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
②关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
③关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
(三)象限
1.象限:
X轴和Y轴把坐标平面分成四个部分,也叫四个象限。
右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般,在x轴和y轴取相同的单位长度。
2.象限的特点:
①特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
②点到轴及原点的距离:
点到x轴的距离为|y|;
点到y轴的距离为|x|;
点到原点的距离为x的平方加y的平方再开根号;
③各象限内和坐标轴上的点和坐标的规律:
第一象限:
(+,+)
第二象限:
(-,+)
第三象限:
(-,-)
第四象限:
(+,-)。
x轴正方向:
(+,0)
x轴负方向:
(-,0)
y轴正方向:
(0,+)
y轴负方向:
(0,-)。
坐标原点:
(0,0)
x轴上的点纵坐标为0,
y轴横坐标为0。
二、坐标方法的简单应用
(一)用坐标表示地理位置的过程:
1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。
2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
(二)用坐标表示平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。
第八章 二元一次方程组
8.1 二元一次方程组
1.二元一次方程:
含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
2.方程组:
有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
3.二元一次方程组的解:
二元一次方程的两个方程的公共解叫二元一次方程组的解
8.2 消元
二元一次方程组有两种解法:
一种是代入消元法,一种是加减消元法.
1.代入消元法:
把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2.加减消元法:
两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。
第九章 不等式与不等式组
9.1 不等式
一、不等式及其解集
1.不等式:
用不等号(包括:
>、<、≠)表示大小关系的式子。
2.不等式的解:
使不等式成立的未知数的值,叫不等式的解。
3.不等式的解集:
使不等式成立的未知数的取值范围,叫不等式的解的集合,简称解集。
不等式的基本性质:
性质1:
如果a>b,b>c,那么a>c(不等式的传递性).
性质2:
不等式的两边同加(减)同一个数(或式子),不等号的方向不变。
如果a>b,那么a+c>b+c(不等式的可加性).
性质3:
不等式的两边同乘(除以)同一个正数,不等号的方向不变。
不等式的两边同乘(除以)同一个负数,不等号的方向改变。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac 性质4: 如果a>b,c>d,那么a+c>b+d. (不等式的加法法则) 性质5: 如果a>b>0,c>d>0,那么ac>bd. (可乘性) 性质6: 如果a>b>0,n∈N,n>1,那么an>bn,且.当0 9.2 实际问题与一元一次不等式 1.一元一次不等式: 含有一个未知数,未知数的次数是1的不等式。 2.解一元一次不等式的一般方法: 可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出 以两条不等式组成的不等式组为例, ①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小” ②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大” ③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。 若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。 此乃“相交取中 ④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。 此乃“向背取空” 9.3 一元一次不等式组 1.不等式组: 几个含有相同未知数的不等式合起来,叫做不等式组。 2.不等式组的解: 几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。 解不等式组就是求它的解集。 3.解不等式组: 先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的解集。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 数学 课本 知识点 归纳 完整版