北师大八年级数学下期中练习二含答案.docx
- 文档编号:12027557
- 上传时间:2023-04-16
- 格式:DOCX
- 页数:44
- 大小:298.86KB
北师大八年级数学下期中练习二含答案.docx
《北师大八年级数学下期中练习二含答案.docx》由会员分享,可在线阅读,更多相关《北师大八年级数学下期中练习二含答案.docx(44页珍藏版)》请在冰豆网上搜索。
北师大八年级数学下期中练习二含答案
2014年北师大八年级数学下期中练习二
一.选择题(共15小题)
1.(2013•桂林)下列图形中既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
2.(2013•西宁)使两个直角三角形全等的条件是( )
A.
一个锐角对应相等
B.
两个锐角对应相等
C.
一条边对应相等
D.
两条边对应相等
3.把一盒苹果分给几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )
A.
3
B.
4
C.
5
D.
6
4.(2013•昭通)已知点P(2a﹣1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
5.(2010•巴中)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )
A.
△ABC的三条中线的交点
B.
△ABC三边的中垂线的交点
C.
△ABC三条角平分线的交点
D.
△ABC三条高所在直线的交点
6.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( )
A.
三边垂直平分线的交点
B.
三条角平分线的交点
C.
三条高的交点
D.
三边中线的交点
7.(2009•邯郸二模)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是( )
A.
10cm
B.
12cm
C.
15cm
D.
17cm
8.(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A.
AB=AD
B.
AC平分∠BCD
C.
AB=BD
D.
△BEC≌△DEC
9.(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是( )
A.
y(x2﹣2xy+y2)
B.
x2y﹣y2(2x﹣y)
C.
y(x﹣y)2
D.
y(x+y)2
10.(2007•防城港)分解因式:
a﹣ab2的结果是( )
A.
a(1+b)(1﹣b)
B.
a(1+b)2
C.
a(1﹣b)2
D.
(1﹣b)(1+b)
11.下列各式变形中,是因式分解的是( )
A.
a2﹣2ab+b2﹣1=(a﹣b)2﹣1
B.
2x2+2x=2x2(1+
)
C.
(x+2)(x﹣2)=x2﹣4
D.
x4﹣1=(x2+1)(x+1)(x﹣1)
12.(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是( )
A.
S▱ABCD=4S△AOB
B.
AC=BD
C.
AC⊥BD
D.
▱ABCD是轴对称图形
13.(2012•贵港)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是( )
A.
B.
C.
D.
14.如果不等式组
无解,那么m的取值范围是( )
A.
m>8
B.
m≥8
C.
m<8
D.
m≤8
15.(2005•杭州)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=( )
A.
110°
B.
30°
C.
50°
D.
70°
二.填空题(共6小题)
16.已知某一次函数的图象如图所示,则使函数值y>0的自变量x的取值范围是 _________ .
17.(2011•大庆)若不等式组
的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于 _________ .
18.(2013•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是 _________ .
19.(2004•郑州)某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打 _________ 折出售此商品.
20.(2003•重庆)已知关于x的不等式组
无解,则a的取值范围是 _________ .
21.(2011•鄂州)若关于x,y的二元一次方程组
的解满足x+y<2,则a的取值范围为 _________ .
三.解答题(共9小题)
22.先分解因式,再求值.5a(b﹣2)+2a(2﹣b),其中a=2,b=﹣2.
23.有若干个学生合影留念,需交照相费5元,照相馆可提供2张相片,如果另外加洗一张相片,需收费0.8元,要使每人平均花费不超过1元,又能每人得到一张相片,则应邀参加照相的同学至少有多少人?
24.如图,△ABC中,AD⊥BC,点F在AC的垂直平分线上,且BD=DE.
(1)如果∠BAE=40°,那么∠C= _________ °,∠B= _________ °;
(2)如果△ABC的周长为13cm,AC=6cm,那么△ABE的周长= _________ cm;
(3)你发现线段AB与BD的和等于图中哪条线段的长,并证明你的结论.
25.(2013•鞍山)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.
求证:
(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.
26.(2004•黄冈)如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:
BF=2CF.
27.(2009•桂林)在保护地球爱护家园活动中,校团委把一批树苗分给初三
(1)班同学去栽种,如果每人分2棵,还剩42棵,如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).
(1)设初三
(1)班有x名同学,则这批树苗有多少棵(用含x的代数式表示);
(2)初三
(1)班至少有多少名同学?
最多有多少名同学?
28.附加题:
如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD.
(1)求证:
AB=AD;
(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?
并证明你的结论.
29.(2013•六盘水)为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.
(1)购进甲乙两种纪念品每件各需要多少元?
(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?
(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第
(2)问中的各种进货方案中,哪种方案获利最大?
最大利润是多少元?
30.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.
(1)求证:
∠CBP=∠ABP;
(2)求证:
AE=CP;
(3)当
,BP′=5
时,求线段AB的长.
2014年北师大八年级数学下期中练习二
参考答案与试题解析
一.选择题(共15小题)
1.(2013•桂林)下列图形中既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
考点:
生活中的旋转现象;轴对称图形;中心对称图形.菁优网版权所有
分析:
根据轴对称图形与中心对称图形的概念和图形特点求解.
解答:
解:
A、是轴对称图形,不是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、不是轴对称图形,是中心对称图形,不符合题意.
故选B.
点评:
掌握好中心对称图形与轴对称图形的概念:
判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;
判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.
2.(2013•西宁)使两个直角三角形全等的条件是( )
A.
一个锐角对应相等
B.
两个锐角对应相等
C.
一条边对应相等
D.
两条边对应相等
考点:
直角三角形全等的判定.菁优网版权所有
专题:
压轴题.
分析:
利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.
解答:
解:
A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故选项错误;
B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故选项错误;
C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故选项错误;
D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故选项正确.
故选D.
点评:
本题考查了直角三角形全等的判定方法;直角三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.
3.把一盒苹果分给几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )
A.
3
B.
4
C.
5
D.
6
考点:
一元一次不等式组的应用.菁优网版权所有
专题:
应用题.
分析:
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
解答:
解:
设有学生x个,苹果y个,则
,
解得3.5≤x≤4.5,
∵x是整数,
∴x=4.
∴学生人数是4.
故选B.
点评:
解决本题的关键是读懂题意,找到符合题意的不等关系式组.
4.(2013•昭通)已知点P(2a﹣1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
考点:
在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.菁优网版权所有
分析:
首先根据点P在第一象限则横纵坐标都是正数即可得到关于a的不等式组求得a的范围,然后可判断.
解答:
解:
根据题意得:
,
解得:
0.5<a<1.
故选C.
点评:
把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
5.(2010•巴中)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )
A.
△ABC的三条中线的交点
B.
△ABC三边的中垂线的交点
C.
△ABC三条角平分线的交点
D.
△ABC三条高所在直线的交点
考点:
线段垂直平分线的性质.菁优网版权所有
专题:
应用题.
分析:
由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.
解答:
解:
∵凉亭到草坪三条边的距离相等,
∴凉亭选择△ABC三条角平分线的交点.
故选C.
点评:
本题主要考查的是角的平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.
6.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( )
A.
三边垂直平分线的交点
B.
三条角平分线的交点
C.
三条高的交点
D.
三边中线的交点
考点:
线段垂直平分线的性质.菁优网版权所有
分析:
根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.
解答:
解:
△ABC的三个顶点距离相等的点是三边垂直平分线的交点.
故选A.
点评:
本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).
7.(2009•邯郸二模)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是( )
A.
10cm
B.
12cm
C.
15cm
D.
17cm
考点:
线段垂直平分线的性质.菁优网版权所有
分析:
要求△ABC的周长,知道AE=3cm,则AB=6cm,只要求得BC+AC即可,根据线段垂直平分线的性质得AD=BD,于是BC+AC等于△ADC的周长,答案可得.
解答:
解:
∵AB的垂直平分AB,
∴AE=BE,BD=AD
∵AE=3cm,△ADC的周长为9cm
∴△ABC的周长是9+2×3=15cm
故选C.
点评:
此题主要考查线段的垂直平分线的性质:
线段的垂直平分线上的点到线段的两个端点的距离相等.对线段进行等效转移时解答本题的关键.
8.(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A.
AB=AD
B.
AC平分∠BCD
C.
AB=BD
D.
△BEC≌△DEC
考点:
线段垂直平分线的性质.菁优网版权所有
分析:
根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.
解答:
解:
∵AC垂直平分BD,
∴AB=AD,BC=CD,
∴AC平分∠BCD,EB=DE,
∴∠BCE=∠DCE,
在Rt△BCE和Rt△DCE中,
,
∴Rt△BCE≌Rt△DCE(HL),
故选:
C.
点评:
此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.
9.(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是( )
A.
y(x2﹣2xy+y2)
B.
x2y﹣y2(2x﹣y)
C.
y(x﹣y)2
D.
y(x+y)2
考点:
提公因式法与公式法的综合运用.菁优网版权所有
分析:
首先提取公因式y,再利用完全平方公式进行二次分解即可.
解答:
解:
x2y﹣2y2x+y3
=y(x2﹣2yx+y2)
=y(x﹣y)2.
故选:
C.
点评:
本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.
10.(2007•防城港)分解因式:
a﹣ab2的结果是( )
A.
a(1+b)(1﹣b)
B.
a(1+b)2
C.
a(1﹣b)2
D.
(1﹣b)(1+b)
考点:
提公因式法与公式法的综合运用.菁优网版权所有
分析:
应先提取公因式a,再根据平方差公式的特点,利用平方差公式继续分解.
解答:
解:
a﹣ab2=a(1+b)(1﹣b).
故选A.
点评:
本题需要进行二次分解因式,一定要分解彻底.
11.下列各式变形中,是因式分解的是( )
A.
a2﹣2ab+b2﹣1=(a﹣b)2﹣1
B.
2x2+2x=2x2(1+
)
C.
(x+2)(x﹣2)=x2﹣4
D.
x4﹣1=(x2+1)(x+1)(x﹣1)
考点:
因式分解的意义.菁优网版权所有
分析:
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
解答:
解:
Aa2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;
B2x2+2x=2x2(1+
)中
不是整式,故B错误;
C(x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;
Dx4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.
故选:
D.
点评:
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意B不是整式的积,A、C不是积的形式.
12.(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是( )
A.
S▱ABCD=4S△AOB
B.
AC=BD
C.
AC⊥BD
D.
▱ABCD是轴对称图形
考点:
平行四边形的性质.菁优网版权所有
分析:
根据平行四边形的性质分别判断得出答案即可.
解答:
解:
A、∵平行四边形ABCD的对角线AC、BD相交于点O,
∴AO=CO,DO=BO,
∴S△AOD=S△DOC=S△BOC=S△AOB,
∴S▱ABCD=4S△AOB,故此选项正确;
B、无法得到AC=BD,故此选项错误;
C、无法得到AC⊥BD,故此选项错误;
D、▱ABCD是中心对称图形,故此选项错误.
故选:
A.
点评:
此题主要考查了平行四边形的性质,正确把握平行四边形的性质是解题关键.
13.(2012•贵港)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是( )
A.
B.
C.
D.
考点:
一次函数与一元一次不等式;在数轴上表示不等式的解集.菁优网版权所有
分析:
根据图象和交点坐标得出关于x的不等式x+m>kx﹣1的解集是x>﹣1,即可得出答案.
解答:
解:
∵直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),
∴根据图象可知:
关于x的不等式x+m>kx﹣1的解集是x>﹣1,
在数轴上表示为:
,
故选B.
点评:
本题考查了一次函数与一元一次不等式,在数轴上表示不等式的解集,主要培养学生的观察图象的能力和理解能力.
14.如果不等式组
无解,那么m的取值范围是( )
A.
m>8
B.
m≥8
C.
m<8
D.
m≤8
考点:
解一元一次不等式组.菁优网版权所有
专题:
计算题.
分析:
根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可.
解答:
解:
因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选B.
点评:
本题考查不等式解集的表示方法,根据大大小小无解,也就是没有中间(公共部分)来确定m的范围.做题时注意m=8时也满足不等式无解的情况.
15.(2005•杭州)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=( )
A.
110°
B.
30°
C.
50°
D.
70°
考点:
平行四边形的性质.菁优网版权所有
分析:
要求∠E+∠F,只需求∠ADE,而∠ADE=∠A与∠B互补,所以可以求出∠A,进而求解问题.
解答:
解:
∵四边形ABCD是平行四边形,
∴∠A=∠ADE=180°﹣∠B=70°
∵∠E+∠F=∠ADE
∴∠E+∠F=70°
故选D.
点评:
主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:
①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
二.填空题(共6小题)
16.已知某一次函数的图象如图所示,则使函数值y>0的自变量x的取值范围是 x<2 .
考点:
一次函数的性质.菁优网版权所有
专题:
数形结合.
分析:
观察函数图象,y随x的增大而减小,而当x=2时,y=0,则x<2时,函数图象在x轴上方,即y>0.
解答:
解:
观察函数图象得当x<2时,y>0.
故答案为x<2.
点评:
本题考查了一次函数的性质:
一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与y轴的交点坐标为(0,b).
17.(2011•大庆)若不等式组
的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于 ﹣6 .
考点:
解一元一次不等式组.菁优网版权所有
专题:
压轴题.
分析:
先用字母a,b表示出不等式组的解集2b+3<x<
,然后再根据已知解集是﹣1<x<1,对应得到相等关系2b+3=﹣1,
=1,求出a,b的值再代入所求代数式中即可求解.
解答:
解:
解不等式组
可得解集为2b+3<x<
因为不等式组的解集为﹣1<x<1,所以2b+3=﹣1,
=1,
解得a=1,b=﹣2代入(a+1)(b﹣1)=2×(﹣3)=﹣6.
故填﹣6.
点评:
主要考查了一元一次不等式组的解定义,解此类题是要先用字母a,b表示出不等式组的解集,然后再根据已知解集,对应得到相等关系,解关于字母a,b的一元一次方程求出字母a,b的值,再代入所求代数式中即可求解.
18.(2013•
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 下期 练习 答案