单片机课程设计电阻测量完整版_精品文档.doc
- 文档编号:1201282
- 上传时间:2022-10-18
- 格式:DOC
- 页数:22
- 大小:182.08KB
单片机课程设计电阻测量完整版_精品文档.doc
《单片机课程设计电阻测量完整版_精品文档.doc》由会员分享,可在线阅读,更多相关《单片机课程设计电阻测量完整版_精品文档.doc(22页珍藏版)》请在冰豆网上搜索。
课程设计报告
课程名称:
单片机课程设计
设计题目:
电阻测量
院系:
通信与控制工程系
专业:
通信工程
班级:
学生姓名:
学号:
08409212
起止日期:
指导教师:
教研室主任:
摘要
本设计电阻测量是利用A/D转换原理,将被测模拟量转换成数字量,并用数字方式显示测量结果的电子测量仪表。
通常测量电阻都采用大规模的A/D转换集成电路,测量精度高,读数方便,在体积、重量、耗电、稳定性及可靠性等方面性能指标均明显优于指针式万用表。
其中,A/D转换器将输入的模拟量转换成数字量,逻辑控制电路产生控制信号,按规定的时序将A/D转换器中各组模拟开关接通或断开,保证A/D转换正常进行。
A/D转换结果通过计数译码电路变换成BCD码,最后驱动显示器显示相应的数值。
本系统以单片机AT89C52为系统的控制核心,结合A/D转换芯片ADC0809设计一个电阻测量表,能够测量一定数值之间的电阻值,通过四位数码显示。
具有读数据准确,测量方便的特点。
关键词:
单片机(AT89C52);电压;A/D转换;ADC0809
目录
设计要求 1
1、方案论证与对比 2
1.1方案一 1
1.2方案二 3
1.3方案对比与比较 3
2、系统硬件电路的设计 3
2.1振荡电路模块 3
2.2A/D转换电路模块 4
2.2.1主要性能 4
2.2.2ADC0809芯片的组成原理 4
2.2.3ADC0809引脚功能 5
2.3主控芯片AT89C52模块 6
2.3.1主要功能特性 6
2.3.2主要引脚功能 7
2.4显示控制电路的设计及原理 9
3、程序设计 11
3.1初始化程序 11
3.2主程序 11
3.3显示子程序 11
3.4A/D转换测量子程序 12
4、调试及性能分析 13
4.1调试与测试 13
4.2性能分析 13
5、元件清单 14
6、总结与思考及致谢 14
参考文献 15
附一:
原理图 16
附二:
程序 17
设计要求
电阻测量(需要简单的外围检测电路,将电阻转换为电压)
测量100,1k,4.7k,10k,20k的电阻阻值,由数码管显示。
测试:
误差10%。
1、方案论证与对比
1.1方案一
利用单稳或电容充放电规律等,可以把被测电阻量的大小转换成脉冲的宽窄,即脉冲的宽度Tx与Rx成正比。
只要把此脉冲和频率固定不变的方波(以下称为时钟脉冲)相与,便可以得到计数脉冲,将它送给数字显示器。
如果时钟脉冲的频率等参数合适,便可实现测量电阻。
计数控制电路输出的脉冲宽度Tx应与Rx成正比,其电路原理图及具体555单稳态触发器的构成及仿真如图1所示。
用555构成的单稳态电路在正常工作条件下输出脉冲的宽度Tx与Rx的函数关系是:
所产生的时间误差可能达到百分之十五,再加上其他原因产生的误差,测量是的时间延迟太大。
555
单稳态电路
A/D
转换
电路
译码-驱动-显示
电路
图1方案一原理图
1.2方案二
用ADC0809 电阻测量,以一个1K的电阻作为基准电阻。
和被测电阻进行分压,分压比例得出电阻比例。
=
用ACD0809测量电阻时间误差为%10以下,分辨率高,输出能与TTL电平兼容。
其原理图如图2所示。
简易外围电路
A/D转换电路
译码-驱动-显示
电路
图2方案二原理图
1.3方案对比与比较
由于课程设计的要求是电阻测量需要简单的外围检测电路,将电阻转换为电压,测量100,1k,4.7k,10k,20k的电阻阻值,由数码管显示。
测试:
误差10%。
通过比较以上两个方案,可知方案二相对来说比较适合。
所以选用方案二作为实验方案。
2、系统硬件电路的设计
2.1振荡电路模块
振荡电路通过这两个引脚外并接石英晶体振荡器和两只电容(电容和一般取33pF),这样就构成一个稳定的自激振荡器。
为单片机提供时钟信号。
如图3所示。
8051
XTAL1XTAL2
C2
C1
图3.振荡电路
2.2A/D转换电路模块
ADC0809是采用逐次逼近式原理的A/D转换器。
ADC0809的工作过程是:
首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。
此地址经译码选通8路模拟输入之一到比较器。
START上升沿将逐次逼近寄存器复位。
下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。
直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。
当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上,9电路图如图4所示。
图4A/D转换电路原理图
2.2.1主要性能
1分辨率为8位二进制数。
2模拟输入电压范围0V—5V,对应A/D转换值为00H—FFH。
3每路A/D转换完成时间为100µs。
4允许输入4路模拟电压,通过具有锁存功能的4路模拟开关,可以分时进行4路A/D转换。
5工作频率为500kHz,输出与TTL电平兼容。
2.2.2ADC0809芯片的组成原理
具体设计要求如图5所示,它是由地址锁存器、4路模拟开关、8位逐次A/D转换器和三态锁存输出缓冲器构成。
由3位地址输入线ADDRA、ADDRB、ADDRC决定4路模拟输入中的1路进8位A/D转换器,A/D转换值进入三态锁存输出缓冲器暂存,在CPU发来输出允许控制信号OE后,三态门打开,经DB7—DB0进入CPU总线,完成一次A/D转换全过程。
图5 A/D转换电路原路图
2.2.3ADC0809引脚功能
ADC0809采用28引脚的封装,双列直插式。
A/D转换由集成电路ADC0809完成。
ADC0809具有8路模拟输入端口,地址线(23—25脚—即C,B,A,)可决定对哪一路模拟输入作A/D转换。
22脚为地址锁存控制(ALE),当输入为高电平时,对地址信号进行锁存。
6脚为测试控制(START),当输入一个2us宽高电平脉冲时,就开始A/D转换。
7脚为A/D转换结束标志(EOC),当A/D转换结束时,7脚输出高电平。
9脚为A/D转换数据输出允许控制(OE),当OE脚为高电平时,A/D转换数据从该端口输出。
10脚为ADC0809的时钟输入端(CLOCK),利用单片机30脚的六分频晶振频率再通过14024二分频得到1MHz时钟。
单片机的P1、P3.0—P3.3端口作为四位LED数码管显示控制。
P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。
P0端口作A/D转换数据读入用,P2端口用作ADC0809的A/D转换控制。
2.3主控芯片AT89C52模块
AT89C52是一个低电压,高性能CMOS8位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS—51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。
AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口。
3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。
其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。
如图6所示为AT89C52管脚图。
图6AT89C52管脚图
2.3.1主要功能特性
·与MCS—51产品指令和引脚完全兼容
·8k字节可重擦写Flash闪速存储器
·1000次擦写周期
·全静态操作:
0Hz—24MHz
·三级加密程序存储器
·32个可编程I/O口线
·低功耗空闲和掉电模式
·3个16位定时/计数器
·可编程串行UART通道
2.3.2主要引脚功能
VCC:
电源
GND:
地
P0口:
P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。
P1口:
P1口是一个具有内部上拉电阻的8位双向I/O口,P1输出缓冲器能驱动4个TTL逻辑电平。
对P1端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX)。
P2口:
P2口是一个具有内部上拉电阻的8位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。
对P2端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX@DPTR)时,P2口送出高八位地址。
在这种应用中,P2口使用很强的内部上拉发送1。
在使用8位地址(如MOVX@RI)访问外部数据存储器时,P2口输出P2锁存器的内容。
在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。
P1口和P2口的第二功能如下表1所示。
表1P0和P1口的第二功能
引脚号
功能特性
P1.0
T2(定时/计数器2外部计数脉冲输入),时钟输出
P1.1
T2EX(定时/计数2捕获/重载触发和方向控制)
P3口:
P3口是一个具有内部上拉电阻的8位双向I/O口,P3口输出缓冲器能驱动4个TTL逻辑电平。
对P3端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
P3口亦作为AT89C52特殊功能(第二功能)使用,在flash编程和校验时,P3口也接收一些控制信号。
具体功能如表2所示:
表2 P3口的第二功能
端口引脚
第二功能
P3.0
RXD(串行输入口)
P3.1
TXD(串行输出口)
P3.2
外中断0
P3.3
外中断1
P3.4
T0(定时/计数器0)
P3.5
T1(定时/计数器1)
P3.6
外部数据存储器写选通
P3.7
外部数据存储器读选通
RST:
复位输入。
晶振工作时,RST脚持续2个机器周期高电平将使单片机复位。
看门狗计时完成后,RST脚输出96个晶振周期的高电平。
特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。
DISRTO默认状态下,复位高电平有效。
ALE/PROG:
地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。
在flash编程时,此引脚(PROG)也用作编程输入脉冲。
在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。
然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。
如果需要,通过将地址为8EH的SFR的第0位置“1”,ALE操作将无效。
这一位置“1”,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单片机 课程设计 电阻 测量 完整版 精品 文档