蜗轮蜗杆设计概要.docx
- 文档编号:12007449
- 上传时间:2023-04-16
- 格式:DOCX
- 页数:23
- 大小:225.49KB
蜗轮蜗杆设计概要.docx
《蜗轮蜗杆设计概要.docx》由会员分享,可在线阅读,更多相关《蜗轮蜗杆设计概要.docx(23页珍藏版)》请在冰豆网上搜索。
蜗轮蜗杆设计概要
蜗轮蜗杆设计
摘要
蜗杆传动从属齿轮传动,在现代工业中应用非常广泛。
蜗轮蜗杆包含两个部分:
蜗杆和蜗轮,其齿形大多数由直线、平面或者平面上的曲线经过一次或两次展成运动形成。
由于蜗轮蜗杆结构性特点,它用于传递空间两相错轴间的运动和动力。
蜗杆传动机构多数情况下蜗杆为主动件,蜗轮为被动件。
蜗杆传动具有传动比大、体积小、运转平稳、噪音小等特点。
在机床制造业中,普通圆柱蜗杆传动的应用尤为普遍,并且几乎成了一般低速传动工作台和连续分度机构的唯一传动形式;冶金工业轧机压下机构都采用大型蜗杆传动;煤矿设备中的各种类型的绞车及采煤机组牵引传动;起重运输业中各种提升设备及无轨电车等都采用蜗杆传动。
其他,在精密仪器设备、军工、宇宙观测仪器中,蜗杆传动常用作分度机构、操纵机构、计算机构、测距机构等等,大型天文望远镜、雷达等也离不开蜗杆传动。
关键词:
蜗轮蜗杆
目录
第一章蜗杆传动的类型和特点1
1.1蜗杆传动的类型1
1.2蜗杆传动的特点2
第二章蜗轮传动的基本参数和几何尺寸计算3
2.1蜗杆传动的基本参数3
2.2蜗杆传动的几何尺寸计算6
第三章蜗轮传动的失效形式、设计准则、材料和结构7
3.1蜗杆传动的失效形式和设计准则7
3.2蜗杆、蜗轮的材料和结构8
第四章蜗轮传动的强度计算10
4.1蜗杆传动的受力分析10
4.2蜗轮齿面接触疲劳强度计算11
4.3蜗轮轮齿的齿根弯曲疲劳强度计算12
第五章蜗轮传动的效率、润滑和热平衡计算13
5.1蜗杆传动的效率13
5.2蜗杆传动的润滑13
5.3蜗杆传动的热平衡计算15
结论17
致谢18
参考文献19
第一章蜗杆传动的类型和特点
蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。
如图1-1所示。
通常两轴交错角为90°,蜗杆为主动件。
1.1蜗杆传动的类型
如图1-2所示,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动(图a),环面蜗杆传动(图b),和锥面蜗杆传动(图c)。
图1-1蜗杆传动
圆柱蜗杆传动,按蜗杆轴面齿型又可分为普通蜗杆传动和圆弧齿圆柱蜗杆传动。
普通蜗杆传动多用直母线刀刃的车刀在车床上切制,可分为阿基米德蜗杆(ZA型)、渐开蜗杆(ZI型)和法面直齿廓蜗杆(ZH型)等几种。
a)b)c)
图1-2蜗杆传动的类型
如图1-3所示,车制阿基米德蜗杆时刀刃顶平面通过蜗杆轴线。
该蜗杆轴向齿廓为直线,端面齿廓为阿基米德螺旋线。
阿基米德蜗杆易车削难磨削,通常在无需磨削加工情况下被采用,广泛用于转速较低的场合。
如图1-4所示,车制渐开线蜗杆时,刀刃顶平面与基圆柱相切,两把刀具分别切出左、右侧螺旋面。
该蜗杆轴向齿廓为外凸曲线,端面齿廓为渐开线。
渐开线蜗杆可在专用机床上磨削,制造精度较高,可用于转速较高功率较大的传动。
蜗杆传动类型很多,本章仅讨论目前应用最为广泛的阿基米德蜗杆传动。
1.2蜗杆传动的特点
(1)传动比大,结构紧凑。
单级传动比一般为10~40(<80),只传动运动时(如分度机构),传动比可达1000。
(2)传动平稳,噪声小。
由于蜗杆上的齿是连续的螺旋齿,蜗轮轮齿和蜗杆是逐渐进入啮合又逐渐退出啮合的,故传动平稳,噪声小。
(3)有自锁性。
当蜗杆导程角小于当量摩擦角时,蜗轮不能带动蜗杆转动,呈自锁状态。
手动葫芦和浇铸机械常采用蜗杆传动满足自锁要求。
(4)传动效率低。
蜗杆蜗轮啮合处有较大的相对滑动,摩擦剧烈、发热量大,故效率低。
一般η=0.7~0.9,具有自锁性能的蜗杆效率仅0.4。
(5)蜗轮造价较高。
为了减摩和耐磨,蜗轮常用青铜制造,材料成本较高。
由上述特点可知:
蜗杆传动适用于传动比大,传递功率不大,两轴空间交错的场合。
图1-3阿基米德蜗杆
图1-4渐开线蜗杆
第二章蜗轮传动的基本参数和几何尺寸计算
图2-1所示阿基米德蜗杆传动,通过蜗杆轴线并垂直于蜗轮轴线的平面称为主平面(中间平面)。
在主平面上蜗轮与蜗杆的啮合相当于渐开线齿轮与齿条的啮合。
为了加工方便,规定主平面的几何参数为标准值。
2.1蜗杆传动的基本参数
1.蜗杆头数z1、蜗轮齿数z2和传动比
图2-1阿基米德蜗杆传动的几何尺寸
蜗杆头数z1,即为蜗杆螺旋线的数目。
蜗杆的头数一般取z1=1~6。
当传动比大于40
或要求自锁时取z1=1;当传动功率较大时,为提高传动效率取较大值,但蜗杆头数过多,加工精度难于保证。
蜗轮的齿数一般取z2=27~80。
z2过少将产生根切;z2过大,蜗轮直径增大,与之相应的蜗杆长度增加,刚度减小。
蜗杆传动的传动比
等于蜗杆与蜗轮转速之比。
当蜗杆回转一周时,蜗轮被蜗杆推动转过z1个齿(或z1/z2周),因此传动比为:
式中:
n1、n2分别为蜗杆和蜗轮的转速(r/min)。
在蜗杆传动设计中,传动比的公称值按下列数值选取:
5、7.5、10、12.5、15、20、25、30、40、50、60、70、80。
其中10、20、40、80为基本传动比应优先选用。
z1、z2可根据传动比
按表2-2选取。
表2-1z1和z2的推荐值
i
7~8
9~13
14~24
25~27
28~40
>40
z1
4
3~4
2~3
2~3
1~2
1
z2
28~32
27~52
28~72
50~81
28~80
>40
2.模数m和压力角
由于蜗杆传动在主平面内相当于渐开线齿轮与齿条的啮合,而主平面是蜗杆的轴向平面又是蜗轮的端面(见图2-2),与齿轮传动相同,为保证轮齿的正确啮合,蜗杆的轴向模数ma1应等于蜗轮的端面模数mt2;蜗杆的轴向压力角
应等于蜗轮的端面压力角
;蜗杆分度圆导程角
应等于蜗轮分度圆螺旋角
,且两者螺旋方向相同。
即:
3.蜗杆的分度圆直径d1和导程角
如图2-3所示,将蜗杆分度圆柱展开,其螺旋线与端平面的夹角
称为蜗杆的导程角。
可得:
(2-1)
式中:
pa1为蜗杆轴向齿距(mm);d1为蜗杆分度圆直径(mm)。
蜗杆的螺旋线与螺纹相似也分左旋和右旋,一般多为右旋。
对动力传动为提高效率应采用较大的
值,即采用多头蜗杆;对要求具有自锁性能的传动,应采用
<
的蜗杆传动,此时蜗杆的头数为1。
由式2-1得:
(2-2)
式中:
称为蜗杆的直径系数,当m一定时,q值增大,则蜗杆直径d1增大,蜗杆的刚度提高。
小模数蜗杆一般有较大的q值,以使蜗杆有足够的刚度。
图2-2分度圆柱展开图
蜗杆与蜗轮正确啮合,加工蜗轮的滚刀直径和齿形参数必须与相应的蜗杆相同,为限制蜗轮滚刀的数量,d1亦标准化。
d1与m有一定的匹配如表所示。
表2-2蜗杆基本参数(Σ=90º)(摘自GB/T10085-88)
模数m
(mm)
分度圆直径d1(mm)
蜗杆头数
z1
直径系数
q
m2d1
(mm)3
模数m
(mm)
分度圆直径
d1(mm)
蜗杆头数
z1
直径系数
q
m2d1
(mm)3
1
18
1
18.000
18
6.3
(80)
1,2,4
12.698
3175
1.25
20
1
16.000
31.25
112
1
17.778
4445
22.4
1
17.920
35
8
(63)
1,2,4
7.875
4032
1.6
20
1,2,4
12.500
51.2
80
1,2,4,6
10.000
5376
28
1
17.500
71.68
(100)
1,2,4
12.500
6400
2
(18)
1,2,4
9.000
72
140
1
17.500
8960
22.4
1,2,4,6
11.200
89.6
10
(71)
1,2,4
7.100
7100
(28)
1,2,4
14.000
112
90
1,2,4,6
9.000
9000
35.5
1
17.750
142
(112)
1,2,4
11.200
11200
2.5
(22.4)
1,2,4
8.960
140
160
1
16.000
16000
28
1,2,4,6
11.200
175
12.5
(90)
1,2,4
7.200
14062
(35.5)
1,2,4
14.200
221.9
112
1,2,4
8.960
17500
45
1
18.000
281
(140)
1,2,4
11.200
21875
3.15
(28)
1,2,4
8.889
278
200
1
16.000
31250
35.5
1,2,4,6
11.27
352
16
(112)
1,2,4
7.000
28672
45
1,2,4
14.286
447.5
140
1,2,4
8.750
35840
56
1
17.778
556
(180)
1,2,4
11.250
46080
4
(31.5)
1,2,4
7.875
504
250
1
15.625
64000
40
1,2,4,6
10.000
640
20
(140)
1,2,4
7.000
56000
(50)
1,2,4
12.500
800
160
1,2,4
8.000
64000
71
1
17.750
1136
(224)
1,2,4
11.200
89600
5
(40)
1,2,4
8.000
1000
315
1
15.750
126000
50
1,2,4,6
10.000
1250
25
(180)
1,2,4
7.200
112500
(63)
1,2,4
12.600
1575
200
1,2,4
8.000
125000
90
1
18.000
2250
(280)
1,2,4
11.200
175000
6.3
(50)
1,2,4
7.936
1985
400
1
16.000
250000
63
1,2,4,6
10.000
2500
注:
①表中模数和分度圆直径仅列出了第一系列的较常用数据。
②括号内的数字尽可能不用。
4.中心距a
蜗杆传动中,当蜗杆节圆与蜗轮分度圆重合时称为标准传动,其中心距为:
(2-3)
规定标准中心距为40、50、63、80、100、125、160、(180)、200、(225)、250、(280)、315、(355)、400、(450)、500。
在蜗杆传动设计时中心距应按上述标准圆整。
2.2蜗杆传动的几何尺寸计算
表2-3阿基米德蜗杆传动的几何尺寸计算
名称
计算公式
蜗杆
蜗轮
齿顶高和齿根高
ha1=ha2=m,hf1=hf2=1.2m
分度圆直径
d1=mq
d2=mz2
齿顶圆直径
da1=m(q+2)
da2=m(z2+2)
齿根圆直径
df1=m(q-2.4)
df2=m(z2-2.4)
顶隙
C=0.2m
蜗杆轴向齿距蜗轮端面齿距
Pa1=pt2=лm
蜗杆分度圆导程角
蜗轮分度圆螺旋角
中心距
a
蜗杆螺纹部分长度
蜗轮齿顶圆弧半径
z1=1、2,L≥(11+0.06z2)m
z1=3、4,L≥(12.5+0.09z2)m
蜗轮外圆直径
z1=1,de2≤da2+2m
z1=2、3,de2≤da2+1.5m
z1=4~6,de2≤da2+m
蜗轮轮缘宽度
z1=1、2b≤0.75da1
z1=4~6,b≤0.67da1
第三章蜗轮传动的失效形式、设计准则、材料和结构
3.1蜗杆传动的失效形式和设计准则
1.齿面相对滑动速度vs
蜗杆传动中蜗杆的螺旋面和蜗轮齿面之间有较大的相对滑动。
滑动速度vs沿蜗杆螺旋线的切线方向。
如图7-7所示,v1为蜗杆的圆周速度,v2为蜗轮的圆周速度,作速度三角形得:
较大的滑动速度vs,对齿面的润滑情况、齿面的失效形式及传动效率都有很大的影响,其概略值如图3-1所示。
图3-1蜗杆传动滑动速度
2.轮齿的失效形式和设计准则
蜗杆传动的失效形式与齿轮传动相似,有轮齿折断、齿面点蚀、齿面磨损和胶合等,
但由于蜗杆、蜗轮的齿廓间相对滑动速度较大、发热量大而效率低,因此传动的主要失效形式为胶合、磨损和点蚀。
由于蜗杆的齿是连续的螺旋线,且蜗杆的强度高于蜗轮,因而失效多发生在蜗轮轮齿上。
在闭式传动中,蜗轮的主要失效形式是胶合与点蚀;在开式传动中,主要失效形式是磨损。
综上所述,蜗杆传动的设计准则为:
闭式蜗杆传动按齿面接触疲劳强度设计,并校核齿根弯曲疲劳强度,为避免发生胶合失效还必须作热平衡计算;对开式蜗杆传动通常只需按齿根弯曲疲劳强度设计。
实践证明,闭式蜗杆传动,当载荷平稳无冲击时,蜗轮轮齿因弯曲强度不足而失效的情况多发生于齿数z2>80~100时,所以在齿数少于以上数值时,弯曲强度校核可不考虑。
图3-2滑动速度vs的概略值
3.2蜗杆、蜗轮的材料和结构
1.蜗杆、蜗轮的材料选择
根据蜗杆传动的主要失效形式可知,蜗杆和蜗轮材料不仅要求有足够的强度,更重要的是要具有良好的减摩性、耐磨性和抗胶合能力。
蜗杆一般用碳钢或合金钢制造。
对高速重载传动常用15Cr、20Cr、20CrMnTi等,经渗碳淬火,表面硬度56~62HRC,须经磨削。
对中速中载传动,蜗杆材料可用45、40Cr、35SiMn等,表面淬火,表面硬度45~55HRC,须要磨削。
对速度不高,载荷不大的蜗杆,材料可用45钢调质或正火处理,调质硬度220~270HBS。
蜗轮材料可参考相对滑动速度vs来选择。
铸造锡青铜抗胶合性、耐磨性好,易加工,允许的滑动速度vs高,但强度较低,价格较贵。
一般ZCuSn10P1允许滑动速度可25m/s,ZCuSn5Pb5Zn5常用于vs<12m/s的场合。
铸造铝青铜,如ZCuAl10Fe3,其减磨性和抗胶合性比锡青铜差,但强度高,价格便宜,一般用于vs≤4m/s的传动。
灰铸铁(HT150、HT200),用于vs≤2m/s的低速轻载传动中。
2.蜗杆、蜗轮的结构
a)b)
图3-3蜗杆轴结构
蜗杆常和轴做成一体,称为蜗杆轴,如图3-3所示(只有df/d≥1.7时才采用蜗杆齿圈套装在轴上的型式)。
车制蜗杆需有退刀槽,d=df–(2~4)mm,故刚性较差(图a);铣削蜗杆无退刀槽时d可大于df(图b),刚性较好。
a)b)c)d)
图3-4蜗轮结构
蜗轮结构分为整体式和组合式两种,如图3-4所示。
图a)所示的整体式蜗轮用于铸铁蜗轮及直径小于100mm的青铜蜗轮。
图b)、c)、d)均为组合式结构,其中图b)为齿圈式蜗轮,轮芯用铸铁或铸钢制造,齿圈用青铜材料,两者采用过盈配合(H7/s6或H7/r6),并沿配合面安装4~6个紧定螺钉,该结构用于中等尺寸而且工作温度变化较小的场合。
图c)为螺栓式蜗轮,齿圈和轮芯用普通螺栓或铰制孔螺栓连接,常用于尺寸较大的蜗轮。
图d)为镶铸式蜗轮,将青铜轮缘铸在铸铁轮芯上然后切齿,适用于中等尺寸批量生产的蜗轮。
第四章蜗轮传动的强度计算
4.1蜗杆传动的受力分析
图4-1蜗杆传动受力分析
蜗杆传动受力分析与斜齿圆柱齿轮的受力分析相似,齿面上的法向力Fn可分解为三个相互垂直的分力:
圆周力Ft、轴向力Fa、径向力Fr,如图4-1所示。
蜗杆为主动件,轴向力Fa1的方向由左、右手定则确定。
图4-1为右旋蜗杆,
用右手四指指向蜗
杆转向,拇指所指方向就是轴向力Fa1的方向。
圆周力Ft1与主动蜗杆转向相反;径向力Fr1指向蜗杆中心。
蜗轮受力方向,由Ft1与Fa2、Fa1与Ft2、Fr1与Fr2的作用力与反作用力关系确定(图4-1)。
各力的大小可按下式计算:
N(4-1)
N(4-2)
N(4-3)
Nmm(4-4)
式中:
T1、T2分别为作用在蜗杆和蜗轮上的转矩,η为蜗杆传动的总效率。
4.2蜗轮齿面接触疲劳强度计算
蜗轮齿面接触疲劳强度计算与斜齿轮相似,以赫兹公式为计算基础,按节点处的啮合条件计算齿面接触应力,可推出对钢制蜗杆与青铜蜗轮或铸铁蜗轮校核公式如下:
≤
(4-5)
设计公式为:
≥
(4-6)
式中:
T2为蜗轮轴的转矩,Nmm;K为载荷系数K=1~1.5,当载荷平稳相对滑动速度较小时(vS<3m/s)取较小值,反之取较大值,严重冲击时取K=1.5;[σH]—蜗轮材料的许用接触应力,MPa。
当蜗轮材料为锡青铜(σb<300MPa)时,其主要失效形式为疲劳点蚀,[σH]=ZN[σ0H]。
[σ0H]为蜗轮材料的基本许用接触应力,如表7-4所示;ZN为寿命系数,
,N为应力循环次数,N=60n2Lh,n2为蜗轮转速(r/min),Lh为工作寿命(h);N>25×107时应取N=25×107,
时应取
。
当蜗轮的材料为铝青铜或铸铁(σb>300MPa)时,蜗轮的主要失效形式为胶合,许用应力与应力循环次数无关其值如表4-1所示。
表4-1锡青铜蜗轮的基本许用接触应力[σ0H](N=107)MPa
蜗轮材料
铸造方法
适用的滑动速度vS
m/s
蜗杆齿面硬度
≤350HB
>45HRC
ZCuSn10P1
砂型
金属型
≤12
≤25
180
200
200
220
ZCuSn5Pb5Zn5
砂型
金属型
≤10
≤12
110
135
125
150
表4-2铸铝青铜及铸铁蜗轮的许用接触应力[σH]MPa
蜗轮材料
蜗杆材料
滑动速度vS(m/s)
0.5
1
2
3
4
6
8
ZCuAl10Fe3
淬火钢
250
230
210
180
160
120
90
HT150;HT200
渗碳钢
130
115
90
—
—
—
—
HT150
调质钢
110
90
70
—
—
—
—
4.3蜗轮轮齿的齿根弯曲疲劳强度计算
由于蜗轮轮齿的齿形比较复杂,要精确计算轮齿的弯曲应力比较困难,通常近似地将蜗轮看作斜齿轮按圆柱齿轮弯曲强度公式来计算,化简后齿根弯曲强度的校核公式为:
≤
(4-7)
设计公式为:
≥
(4-8)
式中:
YF2—蜗轮的齿形系数,按蜗轮的实有齿数Z2查表7-6;[σF]—蜗轮材料的许用弯曲应力,[σF]=YN[σ0F]。
[σ0F]为蜗轮材料的基本许用弯曲应力,如表7-7所示。
YN为寿命系数
,N=60N2Lh。
当N>25×107时,取N=25×107,当N<105时,取N=105。
第五章蜗轮传动的效率、润滑和热平衡计算
5.1蜗杆传动的效率
闭式蜗杆传动的总效率η包括:
啮合效率η1、搅油效率η2和轴承效率η3,
即:
(5-1)
啮合效率η1是总效率的主要部分,蜗杆为主动件时啮合效率按螺旋传动公式
求出:
通常取η2η3=0.95~0.97,
故有:
(5-2)
式中:
为蜗杆螺旋升角(导程角);
为当量摩擦角,
=arctanfv其值如表5-1所示。
在初步计算时,蜗杆的传动效率可近似取下列数值:
闭式传动:
z1
1
2
4
6
η
0.7~0.75
0.75~0.82
0.82~0.92
0.86~0.95
开式传动:
z1=1、2;η=0.60~0.70。
5.2蜗杆传动的润滑
润滑对蜗杆传动特别重要,因为润滑不良时,蜗杆传动的效率将显著降低,并会导致剧烈的磨损和胶合。
通常采用粘度较大的润滑油,为提高其抗胶合能力,可加入油性添加剂以提高油膜的刚度,但青铜蜗轮不允许采用活性大的油性添加剂,以免被腐蚀。
闭式蜗杆传动的润滑油粘度和润滑方法可参考表5-2选择。
开式传动则采用粘度较高的齿轮油或润滑脂进行润滑。
闭式蜗杆传动用油池润滑,在vS≤5m/s时常采用蜗杆下置式,浸油深度约为一个齿高,但油面不得超过蜗杆轴承的最低滚动体中心,如图7-12a、b)所示;vS>5m/s时常用上置式(图5-1c),油面允许达到蜗轮半径1/3处。
表5-1当量摩擦系数fv和当量摩擦角ρv
蜗轮材料
锡青铜
铝青铜
灰铸铁
蜗杆齿面硬度
≥45HRC
<45HRC
≥45HRC
≥45HRC
<45HRC
滑动速度vs(m/s)
fv
ρv
fv
ρv
fv
ρv
fv
ρv
fv
ρv
0.01
0.110
6º17ˊ
0.120
6º51ˊ
0.180
10º12ˊ
0.018
10º12ˊ
0.190
10º45ˊ
0.05
0.090
5º09ˊ
0.100
5º43ˊ
0.140
7º58ˊ
0.140
7º58ˊ
0.160
9º05ˊ
0.10
0.080
4º34ˊ
0.090
5º09ˊ
0.130
7º24ˊ
0.130
7º24ˊ
0.140
7º58ˊ
0.25
0.065
3º43ˊ
0.075
4º17ˊ
0.100
5º43ˊ
0.100
5º43ˊ
0.120
6º51ˊ
0.50
0.055
3º09ˊ
0.065
3º43ˊ
0.090
5º09ˊ
0.090
5º09ˊ
0.100
5º43ˊ
1.00
0.045
2º35ˊ
0.055
3º09ˊ
0.070
4º00ˊ
0.070
4º00ˊ
0.090
5º09ˊ
1.50
0.040
2º17ˊ
0.050
2º52ˊ
0.065
3º43ˊ
0.065
3º43ˊ
0.080
4º34ˊ
2.00
0.035
2º00ˊ
0.045
2º35ˊ
0.055
3º09ˊ
0.055
3º09ˊ
0.070
4º00ˊ
2.50
0.030
1º43ˊ
0.040
2º17ˊ
0.050
2º52ˊ
3.00
0.028
1º36ˊ
0.035
2º00ˊ
0.045
2º35ˊ
4.00
0.024
1º22ˊ
0.031
1º47ˊ
0.040
2º17ˊ
5.00
0.022
1º16ˊ
0.029
1º40ˊ
0.035
2º00ˊ
8.00
0.018
1º02ˊ
0.026
1º29ˊ
0.030
1º43ˊ
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蜗轮 蜗杆 设计 概要