数学速算法.docx
- 文档编号:1194570
- 上传时间:2022-10-18
- 格式:DOCX
- 页数:9
- 大小:17.20KB
数学速算法.docx
《数学速算法.docx》由会员分享,可在线阅读,更多相关《数学速算法.docx(9页珍藏版)》请在冰豆网上搜索。
数学速算法
数学速算法
速算技巧A、乘法速算
一、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满
十前一。
例:
15×17
15+7=22
5×7=35
---------------
255
即15×17=255
解释:
15×17
=15×(10+7)
=15×10+15×7
=150+(10+5)×7
=150+70+5×7
=(150+70)+(5×7)
为了提高速度,熟练以后可以直接用“15+7”,而不用“150+70”。
例:
17×19
17+9=26
7×9=63
连在一起就是255,即260+63=323
二、个位是1的两位数相乘
方法:
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添
上1。
例:
51×31
50×30=1500
50+30=80
------------------
1580
因为1×1=1,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟
练的时候作为助记符,熟练后就可以不使用了。
例:
81×91
80×90=7200
80+90=170
------------------
7370
1
------------------
7371
原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加
上去。
例:
43×46
(43+6)×40=1960
3×6=18
----------------------
1978
例:
89×87
(89+7)×80=7680
9×7=63
----------------------
7743
四、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0
补。
例:
56×54
(5+1)×5=30--
6×4=24
----------------------
3024
例:
73×77
(7+1)×7=56--
3×7=21
----------------------
5621
例:
21×29
(2+1)×2=6--
1×9=9
----------------------
609
“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘
了,这点是很容易被忽略的。
五、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满
十进一,两尾数相乘,得数作为后积。
例:
56×58
5×5=25--
(6+8)×5=7--
6×8=48
----------------------
3248
得数的排序是右对齐,即向个位对齐。
这个原则很重要。
六、被乘数首尾相同,乘数首尾和是10的两位数相乘。
乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有
十位用0补。
例:
66×37
(3+1)×6=24--
6×7=42
----------------------
2442
例:
99×19
(1+1)×9=18--
9×9=81
----------------------
1881
七、被乘数首尾和是10,乘数首尾相同的两位数相乘
与帮助6的方法相似。
两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得
数作为后积,没有十位补0。
例:
46×99
4×9+9=45--
6×9=54
-------------------
4554
例:
82×33
8×3+3=27--
2×3=6
-------------------
2706
八、两首位和是10,两尾数相同的两位数相乘。
两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,
没有十位补0。
例:
78×38
7×3+8=29--
8×8=64
-------------------
2964
例:
23×83
2×8+3=19--
3×3=9
--------------------
1909
平方速算
一、求11,19的平方
底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。
例:
17×17
17,7=24-
7×7=49
---------------
289
参阅乘法速算中的“十位是1的两位相乘”
二、个位是1的两位数的平方
底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得
数为后积,在个位加1。
例:
71×71
7×7=49--
7×2=14-
1
-----------------
5041
参阅乘法速算中的“个位数是1的两位数相乘”
三、个位是5的两位数的平方
十位加1乘以十位,在得数的后面接上25。
例:
35×35
(3+1)×3=12--
25
----------------------
1225
四、21,50的两位数的平方
在这个范围内有四个数字是个关键,在求25,50之间的两数的平方时,若把它们记住了,就
可以很省事了。
它们是:
21×21=441
22×22=484
23×23=529
24×24=576
求25,50的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为
后积,满百进1,没有十位补0。
例:
37×37
37-25=12--
(50-37)^2=169
----------------------
1369
注意:
底数减去25后,要记住在得数的后面留两个位置给十位和个位。
例:
26×26
26-25=1--
(50-26)^2=576
-------------------
676
C、加减法
一、补数的概念与应用
补数的概念:
补数是指从10、100、1000„„中减去某一数后所剩下的数。
例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。
补数的应用:
在速算方法中将很常用到补数。
例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。
D、除法速算
一、某数除以5、25、125时
1、被除数?
5
=被除数?
(10?
2)
=被除数?
10×2
=被除数×2?
10
2、被除数?
25
=被除数×4?
100
=被除数×2×2?
100
3、被除数?
125
=被除数×8?
100
=被除数×2×2×2?
100
在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。
因本人水平所限,上面的算法不一定是最好的心算法。
-------------------------------------------------------------------------
一、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1×9=92×9=183×9=274×9=36
5×9=456×9庋浠院蟮氖幸晃皇哪歉龀耸际钦帽惹懊娴某耸?
。
而后面的一个两位数也有一个特点,就是一个连续数(12),1和2是连续的。
能不能找到一种更简便的计算方法呢,
为了找到一种更简便的算法。
我在这里给小朋友引入一个新的名词——补数。
什么是补数呢,因为这个名词很简单,所以就算是幼儿园的小朋友也很快会明白的。
1+9=10;2+8=10;3+7=10;4+6=10;5+5=10;
6+4=10;7+3=10;8+2=10;9+1=10;
从上面的几个加法可见,如果两个数的和等于10,那么这两个数就互为补数。
也就是说1和9为补数,2和8为补数,3和7为补数,4和6为补数,5的补数还是5就不用记了,只要记4个就行了。
现在我们再看看上面的计算结果:
拿一个63×12=7×108=756举例吧
结果的最前面一个数是7(不用管它是什么位),是不是正好等于第一个乘数(63)中前面的数加1,6+1=7
结果的后两位怎么算出来的呢,如果拿这个7去乘后面那个乘数(12)的最后一位的补数(8)会是什么,7×8=56
呵呵,我们现在不用再分解了,只要把第一个乘数(63)中前面的数加1就是结果的最前面的数,再把这个数乘以后面那个乘数(12)的最后一位的补数(8)就得到结果的后两位。
这样行吗,如果行的话,那可真是太快了,真的是速算了。
试一试其他的题:
18×12=
第一个乘数(18)的前面的数加1:
1+1=2——结果最前面的数
拿2去乘第二个乘数(12)的后面的数
(2)的补数(8):
2×8=16
结果就是216。
看一看上面对吗,
27×12=
结果最前面的数——2+1=3
结果最后面的数——3×8=24
结果324
36×12=
结果最前面的数——3+1=4
结果最后面的数——4×8=32
结果432
45×12=
结果最前面的数——4+1=5
结果最后面的数——5×8=40
结果540
54×12=
结果最前面的数——5+1=6
结果最后面的数——6×8=48
结果648
63×12=
结果最前面的数——6+1=7
结果最后面的数——7×8=56
结果756
72×12=
结果最前面的数——7+1=8
结果最后面的数——8×8=64
结果864
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 速算