五年级奥数题型训练及答案并附上100道奥数练习题.docx
- 文档编号:11714269
- 上传时间:2023-03-31
- 格式:DOCX
- 页数:20
- 大小:511.46KB
五年级奥数题型训练及答案并附上100道奥数练习题.docx
《五年级奥数题型训练及答案并附上100道奥数练习题.docx》由会员分享,可在线阅读,更多相关《五年级奥数题型训练及答案并附上100道奥数练习题.docx(20页珍藏版)》请在冰豆网上搜索。
五年级奥数题型训练及答案并附上100道奥数练习题
五年级奥数题型训练及答案(附上100道奥数练习题)
工程问题
1、某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。
但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套?
2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?
------------------------------------------------------------------------------
应用题
3.实验室中培养了一种奇特的植物,它生长得非常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤?
分数应用题
4.实验小学六年级有学生152人.现在要选出男生人数的1/11和女生5人,到国际数学家大会与专家见面.学校按照上述要求选出若干名代表后,剩下的男、女生人数相等.问:
实验小学六年级有男生多少人?
5、汽车若干辆装运一批货物。
如果每辆装3.5吨,这批货物就有2吨不能运走;如果每辆装4吨,装完这批货物后,还可以装其他货物1吨.这批货物有多少吨?
6、一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是1/5,那么原来的分数是多少?
7、一个生产队共有耕地208亩,计划使水浇地比旱地队多62亩,那么水浇地和旱地各应是多少亩?
8、有红黄两种玻璃球一堆,其中红球个数是黄球个数的1.5倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个。
9.一个机床厂,今年第一季度生产车床198台,比去年同期的产量2倍多36台,去年第一季度生产多少台?
10、同院三家的灯泡,一家是一个15瓦的,一家是一个25瓦的,一家是两个15瓦的,这个月共付电费30.8元,按瓦数分配,各家应付电费多少?
11.排列组合 将A、B、C、D、E、F、G七位同学在操场排成一列,其中学生与必须相邻.请问共有多少种不同的排列方法?
12.列组合
将三盘同样的红花和四盘同样的黄花摆放成一排,要求三盘红花互不相邻,共有__________种不同的方法.
------------------------------------------------------------------------------求面积
13、如图,梯形ABCD中上底为2,下底为3,三角形ADO的面积为12,那么梯形ABCD的面积为多少?
14、右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?
15.(1992年武汉市小学数学竞赛试题)
如图,在等边三角形ABC中,AF=3FB,FH垂直于BC,已知阴影部分的面积为1平方厘米,这个等边三角形的面积是多少平方厘米?
16、(第十三届“华罗庚金杯”少年组数学邀请赛决赛试卷(小学组)
图中,ABCD和CGEF是两个正方形,AG和CF相交与H,已知CH等于CF的三分之一,三角形CHG的面积等于6平方厘米,求五边形ABGEF的面积。
17、正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中DBF的面积为多少平方厘米?
------------------------------------------------------------------------------
18、规定:
a△b=a+(a+1)+(a+2)+…+(a+b-1),其中a,b表示自然数。
1求1△100的值。
2已知x△10=75,求x.
------------------------------------------------------------------------------
19、如图1,有三个正方形ABCD,BEFG和CHIJ,其中正方形ABCD的边长是10,正方形BEFG的边长是6,那么三角形DFI的面积是_________.
20、(小学数学奥林匹克通讯赛决赛试题)梯形ABCD被两条对角线分成了四个三角形S1、S2、S3、
S4。
已知S1=2cm2,S2=6cm2。
求梯形ABCD的面积。
------------------------------------------------------------------------------
例题答案
1、某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。
但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套?
解:
设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77
x=20
甲:
0.6×20=12(人)乙:
0.25×20=5(人)丙:
3×20==60(人)
2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?
解:
设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3
x=18
弟弟30-18=12(岁)
3.
4.
5.解:
设运货的汽车共有x辆。
3.5x+2=4x-1 x=6
6.解:
设原来分数的分子为x 122-x-19=(x-19)×5
x=33 分母:
122-33=89
7.解:
设旱地的亩数为x亩。
208-x=x+62 x=73
8.解:
设取了x次。
5x+9=(4x-2)×1.5 x=6
9略。
10.=解:
设每瓦应付电费x元。
15x+25x+15×2x=30.8 x=0.44
15×0.44=6.60(元) 25×0.44=11.00(元) 15×2×0.44=13.20(元)
11.解:
------------------------------------------------------------------------------
12解
13=三角形ADO的面积为12,则么梯形ABCD的面积为12÷6×25=50
14=解:
设定阴影部分面积为X,则不难由长方形面积公式看出比例关系为:
X/30=15/18,则X=25。
15=解析:
如图,连接△ABC各边中点,则△ABC被分成了大小相等的四个小三角形
在△DBG中,再连接各边中点,得出将△DBG又分成了四个很小的三角形。
经观察,容易得出△ABC的面积为(1×2)×4×4=32(平方厘米)。
16=
--
17=解答:
连接CF,则BD平行于CF,所以四边形BDCF是梯形,三角形BCD的面积等于三角形DBF的面积,三角形BCD的面积是正方形ABCD面积的一半,所以三角形DBF的面积是10×10÷2=50(平方厘米)
18=解:
(1)原式=1+2+3+…+100=(1+100)×100÷2=5050
(2)原式即x+(x+1)+(x+2)+…+(X+9)=75,
所以10X+(1+2+3+…+9)=75
10x+45=75
10x=30
x=3
----------------------------------------------------------------------------------------------------------------------------------------------------------
19=解:
连接IC,由正方形的对角线易知IC//DF;等积变换得到:
三角形DFI的面积=三角形DFC的面积=20
20=解析:
三角形S1和S2都是等高三角形,它们的面积比为2∶6=1∶3;则:
DO∶OB=1∶3。
△ADB和△ADC是同底等高三角形,所以,S1=S3=2厘米2。
三角形S4和S3也是等高三角形,其底边之比为1∶3,所以S4∶S3=1∶3,则S4=2/3厘米2
所以,梯形ABCD的面积为32/3。
21、(06年清华附中考题)如图,在三角形ABC中,D为BC的中点,E为AB上的一点,且BE=1/3AB,已知四边形EDCA的面积是35,求三角形ABC的面积.
22、正方形ABFD的面积为100平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少?
04.jpg
------------------------------------------------------------------------------
21=解答:
根据定理:
所以四边形ACDE的面积就是6-1=5份,这样三角形35÷5×6=42。
22=解:
公共部分的运用,三角形ABC面积-三角形CDE的面积=30,
两部分都加上公共部分(四边形BCDF),正方形ABFD-三角形BFE=30,
所以三角形BFE的面积为70,所以FE的长为70×2÷10=14,所以DE=4。
------------------------------------------------------------------------------
23、、(05年三帆中学考题)右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是( )平方厘米.
24、如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.
23=解:
阴影面积=1/2×ED×AF+1/2×AB×CD=1/2×8×7+1/2×3×12=28+18=46。
24=解答:
基本的格点面积的求解,可以用解答种这样的方法求解,当然也可以用格点面积公式来做,内部点有16个,周边点有8个,所以面积为16+8÷2-1=19
------------------------------------------------------------------------------
25、求出图中梯形ABCD的面积,其中BC=56厘米。
(单位:
厘米)
26、(全国第四届“华杯赛”决赛试题)图中图
(1)和图
(2)是两个形状、大小完全相同的大长方形,在每个大长方形内放入四个如图(3)所示的小长方形,深色区域是空下来的地方,已知大长方形的长比宽多6厘米,问:
图
(1),图
(2)中深色的区域的周长哪个大?
大多少?
------------------------------------------------------------------------------
25=解答:
根据梯形面积公式,有:
S梯=1/2×(AB+CD)×BC,又因为三角形ABC和CDE都是等腰直角三角形,所以AB=BE,CD=CE,也就是:
S梯=1/2×(AB+CD)×BC=1/2×BC×BC,所以得BC=56cm,所有有S梯=1/2×56×56=1568.
26=解析:
图
(1)中画斜线区域的周长恰好等于大长方形的周长,图
(2)中画斜线区域的周长明显比大长方形周长小。
二者相差2·AB。
从图
(2)的竖直方向看,AB=a-CD图
(2)中大长方形的长是a+2b,宽是2b+CD,所以,(a+2b)-(2b+CD)=a-CD=6(厘米)故:
图
(1)中画斜线区域的周长比图
(2)中画斜线区域的周长大,大12厘米。
体积计算
27、一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块,如下图.问这60块长方体表面积的和是多少平方米?
27=解答:
6+(2+3+4)×2=24(平方米)
【小结】原来的正方体有六个外表面,每个面的面积是1×1=1(平方米),无论后来锯成多少块,这六个外表面的6平方米总是被计入后来的小木块的表面积的.再考虑每锯一刀,就会得到两个1平方米的表面,1×2=2(平方米)
现在一共锯了:
2+3+4=9(刀),
一共得到2×9=18(平方米)的表面.
因此,总的表面积为:
6+(2+3+4)×2=24(平方米)。
这道题只要明白每锯一刀就会得到两个一平方米的表面,然后求出锯了多少刀,就可求出总的表面积。
28.长方形体积
一个长方体的长、宽、高都是整数厘米,它的体积是2010立方厘米,那么它的长、宽、高和的最小可能值是多少厘米?
28=解答:
6+9+37=52
【小结】2010=2×33×37三个数相乘,当积一定时,三个数最为接近的时候和最小。
所以这3个数为6,9,37。
6+9+37=52。
所以这个长方体的长、宽、高的和最小为52。
29、算数字
a,b,c是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?
30、有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。
求原来的两位数。
----------------------------------------------------------------------------------------------------
30=解答:
由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1。
设这个两位数为x。
由题意得到
(10x+1)-(100+x)=666,
10x+1-100-x=666, 10x-x=666-1+100, 9x=765, x=85。
原来的两位数是85。
31、证明
----------------------------------------------------------------------------------------------------
31、解方程
求不定方程5x+3y=68的所有整数解。
31=解答:
容易看出,当y=1时,x=(68-3×1)÷5=13,即x=13,y=1是一个解。
因为x=13,y=1是一个解,当x减小3,y增大5时,5x减少15,3y增大15,方程仍然成立,所以对于x=13,y=1,x每减小3,y每增大5,仍然是解。
方程的所有整数解有5个:
只要找到不定方程的一个解,其余解可通过对这个解的加、减一定数值得到。
限于我们学到的知识,寻找第一个解的方法更多的要依赖"拼凑"
32、分房间
学校要安排66名新生住宿,小房间可以住4人,大房间可以住7人,需要多少间大、小房间,才能正好将66名新生安排下?
33、自然数问题
求满足除以6余3,除以8余5,除以9余6的最小自然数。
34、在10000以内,除以3余2,除以7余3,除以11余4的数有几个?
35、求满足除以5余1,除以7余3,除以8余5的最小的自然数。
32=解答:
设需要大房间x间,小房间y间,则有7x+4y=66。
这个方程有两个未知数,我们没有学过它的解法,但由4y和66都是偶数,推知7x也是偶数,从而x是偶数。
当x=2时,由7×2+4y=66解得y=13,所以x=2,y=13是一个解。
因为当x增大4,y减小7时,7x增大28,4y减小28,所以对于方程的一个解x=2,y=13,当x增大4,y减小7时,仍然是方程的解,即x=2+4=6,y=13-7=6也是一个解。
所以本题安排2个大房间、13个小房间或6个大房间、6个小房间都可以。
33=解答:
如果给所求的自然数加3,所得数能同时被6,8,9整除,所以这个自然数是
[6,8,9]-3=72-3=69。
34=解答:
满足"除以3余2"的数有5,8,11,14,17,20,23,…
再满足"除以7余3"的数有17,38,59,80,101,…
再满足"除以11余4"的数有59。
因为阳[3,7,11]=231,所以符合题意的数是以59为首项,公差是231的等差数列。
(10000-59)÷231=43……8,所以在10000以内符合题意的数共有44个。
35=解答:
33.34的题类似,先求出满足"除以5余1"的数,有6,11,16,21,26,31,36,…
在上面的数中,再找满足"除以7余3"的数,可以找到31。
同时满足"除以5余1"、"除以7余3"的数,彼此之间相差5×7=35的倍数,有31,66,101,136,171,206,…
在上面的数中,再找满足"除以8余5"的数,可以找到101。
因为101<[5,7,8]=280,所以所求的最小自然数是101。
在这两题中,各有三个约束条件,我们先解除两个约束条件,求只满足一个约束条件的数,然后再逐步加上第二个、第三个约束条件,最终求出了满足全部三个约束条件的数。
这种先放宽条件,再逐步增加条件的解题方法,叫做逐步约束法。
小学五年级奥数综合100练习题
1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2.有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4.一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:
5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?
8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。
乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。
最后乙车比甲车迟4分钟到C地。
那么乙车出发后几分钟时,甲车就超过乙车。
9.甲、乙两辆清洁车执行东、西城间的公路清扫任务。
甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个。
那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
11.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12.一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13.一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地需要多长时间?
16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18.一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19.某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20.甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床——?
21.圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22.某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23.从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24.师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 题型 训练 答案 附上 100 道奥数 练习题