采煤机相关英文文献翻译.docx
- 文档编号:11600001
- 上传时间:2023-03-20
- 格式:DOCX
- 页数:24
- 大小:598.94KB
采煤机相关英文文献翻译.docx
《采煤机相关英文文献翻译.docx》由会员分享,可在线阅读,更多相关《采煤机相关英文文献翻译.docx(24页珍藏版)》请在冰豆网上搜索。
采煤机相关英文文献翻译
英文原文:
Controlstrategyforanintelligentshearerheightadjustingsystem
FANQigao*,LIWei,WANGYuqiao,ZHOULijuan,YANGXuefeng,YEGuoSchoolofMechanical&ElectricalEngineering,ChinaUniversityofMining&Technology,Xuzhou221008,China
Abstract:
Anintelligentshearerheightadjustingsystemisakeytechnologyforminingataman-lessworkingface.Acontrolstrategyforashearerheightadjustingsystembasedonamathematicalmodeloftheheightadjustingmechanismisproposed.Itconsidersthenon-linearityandtimevariationsinthecontrolprocessandusesDynamicFuzzyNeuralNetworks(D-FNN).Theinversecharacteristicsofthesystemarestudied.Anadaptiveon-linelearninganderrorcompensationmechanismguaranteessystemreal-timeperformanceandreliability.ParametersfromaGermanEickhoffSL500shearerwereusedwithMatlab/Simulinktosimulateaheightadjustingcontrolsystem.SimulationshowsthatthetraceerrorofaD-FNNcontrollerissmallerthanthatofaPIDcontroller.Also,theD-FNNcontrolschemehasgoodgeneralizationandtrackingperformance,whichallowittosatisfytheneedsofashearerheightadjustingsystem.
Keywords:
shearer;heightadjustingsystem;dynamicfuzzyneuralnetwork
1Introduction
Thesheareranditscontrolsystemaremaincomponentsforcoalmining.Theshearingprocessincludesdrumliftingandtractioncontrol.Domesticsheardrumliftingnowusesmanualadjustmentsafterartificialobservationorageometrictrackcutting-memorymethodaftertrialmanualadjustmentsfromtestcuttings.Theinstallationofsensorsontheshearerthatcouldidentifycoal-rockhasbeenproposed.Informationfromthesensorswouldbeusedtoachievedrumheightcontroldirectlybyautomaticallyliftingtheshearer
.Thistechnology,whichisbasedonsimpledrumheightfeedback,hasnotbeenwidelyappliedduetothestructuralcomplexityofthecoalseam,technicalproblemsrelatedtoidentificationofthecoal-rockinterfaceaswellasroof,andfloor,requirementsforsuchcomprehensivecoalminingmechanization.Othershaveproposedanintelligentshearerheightadjustingsystembasedonaself-adaptivePIDneuralnetworkcontrolmethod
.Thisrequiresdatasamplesfromanoperatingshearerheightadjustingsystemfollowedbycarefulchoiceoftheneuralnetworkandadjustmentofthealgorithmicparameters.Thesuitabilityofthesystemwouldthenbedeterminedbycheckingperformanceagainsttestsamples.Afterthestructureandparametersweredeterminedthetrainedneuralnetworkcouldbeappliedtopracticalsystems.Theparameterscouldbead-justedfurtherwhilethesystemwasrunningto
achieveself-adaptivelearningandcontrol.Settingupsuchasysteminvolvesconsiderableuncertaintyandagreatdealoftime.
Consideringthefactorsandtheneedforimprovingproductqualityandresourcerecoverybyautomaticcontrolofthedrumheightweproposeanewmethodcalledtheshearerintelligentheightadjustingsystemcontrolmethod.ItisbasedonDynamicFuzzyNeuralNetworks(D-FNN).D-FNNareneuralnetworksthathavethecharacteristicsofpowerfulon-linelearning,fastlearningandgoodgeneralization.D-FNNgivereal-timecontrolandimprovedynamiccharacteristicsofashearerheightadjustingsystemandprovideatheoreticalbasisfordesigninganintelligentheightadjustingcontrolsystemfortheshearer.
2Analysisofashearerheightadjustingsystem
2.1Structureoftheshearerheightadjustingsystem
Theshearerheightadjustingmechanismusesahydraulicservosystemhavinggooddynamicperformance.Fig.1diagramsadrumshearer.Theelectro-hydraulicservosystemcontrolsextensionofthehydrauliccylinderandmovestherockerarmtosettheheight.Theadjustingmechanismisaplanaropenchainconsistingofaseriesofconnectedrodstructuresandcorrespondingkinematicpairs.Adescripionoftherelativemotionofthepartsshowshowheightadjustmentoccurs.Adetailedmotionanalysisfollows.Suppose:
1)Allcomponentsarerigidandelasticdeformationisignored;
2)Gapsbetweenallmechanismsareignored.
2.2Mathematicalanalysisoftheshearerheightadjustmentsystem
Fig.2showstheinitialpositionofthehydrauliccylinderas
theendpositionas
thelongarmoftherockerarmisL,shortarmis
thedrawbarbetweentheheightadjustmentcylinderandtherockerarmis
thedistancebetweentheheightadjustmentcylinderandtherockerpivotisDandtheanglebetweenthelongarmandtheshortarmis
.
Definition1.ShearerminingheightH:
H=L
(1)
Endposition
isgivenby
allowingthedisplacementofthehydrauliccylinder,
tobeestablished.
Definition2.Displacementofthehydrauliccylinder,
is:
(2)
where
Wewrite:
(3)
where
Substitutiongives
as:
(4)
Sincebisgivenby
canbeexpressedasafunctionofrocker-heighttoangle:
(5)
Kineticanalysisofthemodelshearerheightadjustingsystemshowsitisathirdordersystem.Thesystemtransferfunctionis
:
(6)
whereKisthesystemgain,ζisthesystemdampingratio,wisthenaturalfrequencyofthesystem,F(s)theLaplacetransformoftheservomechanism,
theLaplacetransformof
(inEq.(5)),
isderivedfromEq.(6),theswingangle,θ,oftherockerarmisfromEq.(5)andθcontrolsthefeedback.
Sincetheheightadjustingsystemisnon-linearandatime-varyingdynamicsystematraditionalPIDcontrollercannotprovidesatisfactorycontrol.D-FNNareproposedasmeetingtherequirementsofreliabilityandrealtimeperformance.
3Dynamicfuzzyneuralnetworks
D-FNNarebasedontheexpansionofRadialBasisFunction(RBF)neuralnetworks.Theprominentcharacteristicsofthislearningalgorithmarethesimultaneousadjustmentofparametersandtheidentificationofanappropriatestructure.Thisprovidesrapidlearningsuitableforreal-timecontrolandformodelingoftheshearerheightadjustingsystem
ThestructureofadynamicfuzzyneuralnetworkisshowninFig.3.
InFig.3
…,
arethesysteminputvariables,yisthesystemoutput,
isthemembershipfunction,j,oftheinputvariable,i,
isthefuzzyruleofmembershipfunctionj,
isthenormalizednodeofj,
istheconnectionweightofrulejanduisthewholesystemrulenumber.
Theswingangle,θ,oftherockerarmwaschosenasthesysteminputvariablethatcontrolsexpansionofthehydrauliccylinder.AGaussianfunction,Eq.(7),isusedforthemembershipfunction.
(7)
whereirangesfrom1tor,jrangesfrom1tou,
isthemembershipfunction,j,of
isthecenteroftheGaussianmembershipfunction,j,of
isthewidthoftheGaussianmembershipfunction,j,of
ristheinputvariablenumberanduisthenumberofthemembershipfunctionaswellasthewholesystemrulenumber.
Theoutputof
rulej,isobtainedfrom:
(8)
whereXisgivenby:
andthecenterofRBFneuralnetworkjisgivenby:
ThisgivestheD-FNNmodelas:
(9)
whereαistheconnectionweightofrulei.
4D-FNNcontrolstrategy
TheD-FNNcontrolschemeisshowninFig.4.Thebasicideaisobtainingtheinversecharacteristicoftheshearerheightadjustingsystemandthenproducingacompensationsignalfromthisinversedynamicmodel.Therearetwodynamicfuzzyneuralnetworkshere:
AandB.NetworkAisforsystemweighttrainingwhilenetworkBisacopyofthetrainedAnetworkthatisusedforproducingthecontrolsignal.
Thecontrolalgorithmis:
(10)
wherexΔistheexpecteddisplacementoftheheightadjustinghydrauliccylinder;PDΔxtheactualdisplacementofthecylinderproducedbythePDcontrollerandDFNNBΔxtheactualdisplacementofthecylinderproducedbynetworkB.
ThePDcontrollerisforfasterandmoreaccuratetrackingperformance.ThekeytotheD-FNNcontrol
systemisthetrainingofD-FNNBtominimizethesquarederrorbetweenexpectedandactualdisplacementsproducedbynetworkB
:
(11)
Agradientdescentmethodisusedfortheweightadjustingalgorithm
:
(12)
whereλisthelearningrateandλ>0.λhasalargeinfluenceontheconvergencerate.Increasingofλcanspeeduptheconvergencerate,whichismoresuitablefortime-varyingsystemmodelingandcontrol.Atthesametimetheanti-interferenceperformanceofthesystemdeclines.Adecreaseinλslowsdownconvergencebutproducesasystemlesssensitivetointerference.Aself-adjustinglearningratemethodisproposedherein,theprinciplebeingthatwhenthenewerrorexceedsthelasterrorovershootinghasoccurredandλshouldbereduced.Ifthenewerrorissmallerthanthelasterrortheweightadjustmentsareeffectiveandλshouldbeincreased.Iftheerrorisconstantthenλiskeptthesame.Thismaybewrittenas:
(13)
TestsshowthatD-FNNusingtheself-adjustinglearningratemethodrequiresmuchlesstrainingtimethansystemsusingafixedlearningrate.
5Systemsimulation
ThemathematicalmodelandaD-FNNcontrolalgorithmmaybeusedinamodelshearerheightad-
justingsystembuiltusingMatlab/Simulink[
.TheactualparametersarefromaGermanEickhoffSL500machine.Theshearermaximumcuttingheightis5.50mandthefootwallis1.08m.Theangleoftherockerarmis–21.3°~+55°.Thedrawbar,LG,is2.05m,theshortarm,LR,is1.20m,Dis0.9mandtheangle
5.1SimulationofaD-FNNcontroller
Supposetherockerarmmoveswithinarangeof–21.3°~+55°.TheD-FNNcontrolstrategytracesthetrajectoryoftherockerarmandthetrajectorytracingerrorareshowninFig.5.InFig.5bthemaximumtrajectorytracingerroroftherockerarmis0.65°,whichoccursearlyinthetrainingstage.AtthispointtheD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 采煤 相关 英文 文献 翻译