完整word版相交线与平行线专题总结含答案推荐文档.docx
- 文档编号:11595718
- 上传时间:2023-03-19
- 格式:DOCX
- 页数:13
- 大小:146.76KB
完整word版相交线与平行线专题总结含答案推荐文档.docx
《完整word版相交线与平行线专题总结含答案推荐文档.docx》由会员分享,可在线阅读,更多相关《完整word版相交线与平行线专题总结含答案推荐文档.docx(13页珍藏版)》请在冰豆网上搜索。
完整word版相交线与平行线专题总结含答案推荐文档
相交线与平行线专题总结
一、知识点填空
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.
2.对顶角的性质可概括为:
3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.
4.垂线的性质:
⑴过一点______________一条直线与已知直线垂直
⑵连接直线外一点与直线上各点的所在线段中,
5.直线外一点到这条直线的垂线段的长度,叫做
6.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中:
⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.
7.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.
8.平行公理:
经过直线外一点,有且只有一条直线与这条直线______.
推论:
如果两条直线都与第三条直线平行,那么_____________________.
9.平行线的判定:
⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:
_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:
___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.
10.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______.
11.平行线的性质:
⑴两条平行直线被第三条直线所截,同位角相等.简单说成:
⑵两条平行直线被第三条直线所截,内错角相等.简单说成:
__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:
________________________________.
12.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.
13.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.
14.平移的性质:
⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.
二:
典型题型训练
15.如图,
那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.
16.设
、b、c为平面上三条不同直线,若
,则a与c的位置关系是_________;若
,则a与c的位置关系是_________;若
,
,则a与c的位置关系是________.
17.
如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.
18.如图,
与
是邻补角,OD、OE分别是
与
的平分线,试判断OD与OE的位置关系,并说明理由.
19.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:
∠B+∠E=∠BCE过点C作CF∥AB,
则
____()
又∵AB∥DE,AB∥CF,
∴____________()
∴∠E=∠____( )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
20.⑴如图,已知∠1=∠2 求证:
a∥b.⑵直线
,求证:
.
21.阅读理解并在括号内填注理由:
如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.
证明:
∵AB∥CD,
∴∠MEB=∠MFD( )
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即 ∠MEP=∠______
∴EP∥_____.( )
22.已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:
⑴∠BAC的大小;⑵∠PAG的大小.
23.
如图,已知
,
于D,
为
上一点,
于F,
交CA于G.
求证
24.已知:
如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?
试说明理由.
25.
三:
兴趣拓展
平行线问题:
平行线是我们日常生活中非常常见的图形.练习本每一页中的横线、直尺的上下两边、人行横道上的“斑马线”以及黑板框的对边、桌面的对边、教室墙壁的对边等等均是互相平行的线段.正因为平行线在生活中的广泛应用,因此有关它的基本知识及性质成为中学几何的基本知识.正因为平行线在几何理论中的基础性,平行线成为古往今来很多数学家非常重视的研究对象.历史上关于平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、黎曼几何及欧几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用.现行中学中所学的几何是属于欧几里得几何,它是建立在这样一个公理基础之上的:
“在平面中,经过直线外一点,有且只有一条直线与这条直线平行”.在此基础上,我们学习了两条平行线的判定定理及性质定理.下面我们举例说明这些知识的应用.
例1如图1-18,直线a∥b,直线AB交a与b于A,B,CA平分∠1,CB平分∠2,求证:
∠C=90°
例2如图1-21所示,AA1∥BA2求∠A1=∠B1+∠A2.
例3如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°, 求∠C.
例4求证:
三角形内角之和等于180°.
例5求证:
四边形内角和等于360°.
例6如图1-29所示.直线l的同侧有三点A,B,C,且AB∥l,BC∥l.求证:
A,B,C三点在同一条直线上.
例7如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD.求证:
∠3=∠B.
四,课后思考题
1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.
2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.
3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:
EF与EG中有没有与AB平行的直线,为什么?
4.证明:
五边形内角和等于540°.
5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:
EF平分∠DEB.
参考答案
一:
1.邻补角 2. 对顶角,对顶角相等 3.垂直 有且只有 垂线段最短 4.点到直线的距离 5.同位角 内错角 同旁内角 6.平行 相交 平行 7.平行 这两直线互相平行 8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行. 9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm8cm10cm4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16.OD⊥OE 理由略 17.1(两直线平行,内错角相等)DE∥CF(平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a∥b(同位角相等 两直线平行) ⑵∵a∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19.两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°. 21.
22.∠A=∠F.∵∠1=∠DGF(对顶角相等)又∠1=∠2 ∴∠DGF=∠2 ∴DB∥EC(同位角相等,两直线平行) ∴∠DBA=∠C(两直线平行,同位角相等) 又∵∠C=∠D ∴∠DBA=∠D ∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).
三 例1如图1-18,直线a∥b,直线AB交a与b于A,B,CA平分∠1,CB平分∠2,求证:
∠C=90°
分析由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=
过C点作直线l,使l∥a(或b)即可通过平行线的性质实现等角转移.
证过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,所以∠1+∠2=180°(同侧内角互补). 因为AC平分∠1,BC平分∠2,所以
又∠3=∠CAE,∠4=∠CBF(内错角相等),所以∠3+∠4=∠CAE+∠CBF
说明做完此题不妨想一想这个问题的“反问题”是否成立,即“两条直线a,b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠ABF的平分线,若∠C=90°,问直线a与直线b是否一定平行?
”
由于这个问题与上述问题非常相似(将条件与结论交换位置),因此,不妨模仿原问题的解决方法来试解.
例2如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.
分析本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即∠A1+∠A2=∠B1.①
猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二.
证过B1引B1E∥AA1,它将∠A1B1A2分成两个角:
∠1,∠2(如图1-22所示)因为AA1∥BA2,所以B1E∥BA2.从而∠1=∠A1,∠2=∠A2(内错角相等),所以∠B1=∠1+∠2=∠A1+∠A2,即∠A1-∠B1+∠A2=0.
说明
(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图1-23所示.连接A1,A2之间的折线段增加到4条:
A1B1,B1A2,A2B2,B2A3,仍然有
∠A1+∠A2+∠A3=∠B1+∠B2.
(即那些向右凸出的角的和=向左凸的角的和)即
∠A1-∠B1+∠A2-∠B2+∠A3=0.
进一步可以推广为∠A1-∠B1+∠A2-∠B2+…-∠Bn-1+∠An=0.
这时,连结A1,An之间的折线段共有n段A1B1,B1A2,…,Bn-1An(当然,仍要保持AA1∥BAn).
推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况.
(2)这个问题也可以将条件与结论对换一下,变成一个新问题.
问题1如图1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?
问题2如图1-25所示.若
∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn-1,问AA1与BAn是否平行?
这两个问题请同学加以思考.
例3如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,
求∠C.
分析利用平行线的性质,可以将角“转移”到新的位置,如∠1=∠DFC或∠AFB.若能将∠1,∠2,∠C“集中”到一个顶点处,这是最理想不过的了,过F点作BC的平行线恰能实现这个目标.
解过F到FG∥CB,交AB于G,则
∠C=∠AFG(同位角相等),
∠2=∠BFG(内错角相等).
因为AE∥BD,所以∠1=∠BFA(内错角相等),
所以∠C=∠AFG=∠BFA-∠BFG=∠1-∠2=3∠2-∠2=2∠2=50°.
说明
(1)运用平行线的性质,将角集中到适当位置,是添加辅助线(平行线)的常用技巧.
(2)在学过“三角形内角和”知识后,可有以下较为简便的解法:
∠1=∠DFC=∠C+∠2,即∠C=∠1-∠2=2∠2=50°.
例4求证:
三角形内角之和等于180°.
分析平角为180°.若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决,下面方法是最简单的一种.
证如图1-27所示,在△ABC中,过A引l∥BC,则
∠B=∠1,∠C=∠2(内错角相等).
显然∠1+∠BAC+∠2=平角,
所以∠A+∠B+∠C=180°.
说明事实上,我们可以运用平行线的性质,通过添加与三角形三条边平行的直线,将三角形的三个内角“转移”到任意一点得到平角的结论.如将平角的顶点设在某一边内,或干脆不在三角形的边上的其他任何一点处,不过,解法将较为麻烦.同学们不妨试一试这种较为麻烦的证法.
例5求证:
四边形内角和等于360°.
分析应用例3类似的方法,添加适当的平行线,将这四个角“聚合”在一起使它们之和恰为一个周角.在添加平行线中,尽可能利用原来的内角及边,应能减少推理过程.
证如图1-28所示,四边形ABCD中,过顶点B引BE∥AD,BF∥CD,并延长AB,CB到H,G.则有∠A=∠2(同位角相等),∠D=∠1(内错角相等),∠1=∠3(同位角相等).∠C=∠4(同位角相等),又∠ABC(即∠B)=∠GBH(对顶角相等).由于∠2+∠3+∠4+∠GBH=360°,所以
∠A+∠B+∠C+∠D=360°.
说明
(1)同例3,周角的顶点可以取在平面内的任意位置,证明的本质不变.
(2)总结例3、例4,并将结论的叙述形式变化,可将结论加以推广:
三角形内角和=180°=(3-2)×180°,
四边形内角和=360°=2×180°=(4-2)×180°.
人们不禁会猜想:
五边形内角和=(5-2)×180°=540°,
…………………………n边形内角和=(n-2)×180°.
这个猜想是正确的,它们的证明在学过三角形内角和之后,证明将非常简单.(3)在解题过程中,将一些表面并不相同的问题,从形式上加以适当变形,找到它们本质上的共同之处,将问题加以推广或一般化,这是发展人的思维能力的一种重要方法.
例6如图1-29所示.直线l的同侧有三点A,B,C,且AB∥l,BC∥l.求证:
A,B,C三点在同一条直线上.
分析A,B,C三点在同一条直线上可以理解为∠ABC为平角,即只要证明射线BA与BC所夹的角为180°即可,考虑到以直线l上任意一点为顶点,该点分直线所成的两条射线为边所成的角均为平角,结合所给平行条件,过B作与l相交的直线,就可将l上的平角转换到顶点B处.
证过B作直线BD,交l于D.因为AB∥l,CB∥l,所以
∠1=∠ABD,∠2=∠CBD(内错角相等).
又∠1+∠2=180°,所以∠ABD+∠CBD=180°,
即∠ABC=180°=平角.A,B,C三点共线.思考若将问题加以推广:
在l的同侧有n个点A1,A2,…,An-1,An,且有AiAi+1∥l(i=1,2,…,n-1).是否还有同样的结论?
例7如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD.
求证:
∠3=∠B.
分析如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得.
证因为∠1=∠2,所以
AD∥BC(内错角相等,两直线平行).
因为∠D=90°及EF⊥CD,所以
AD∥EF(同位角相等,两直线平行).
所以BC∥EF(平行公理),
所以
∠3=∠B(两直线平行,同位角相等).
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 相交 平行线 专题 总结 答案 推荐 文档