②除以小于1的数;商大于被除数:
a÷b=c当b<1时;c>a(a≠0b≠0)
③除以等于1的数;商等于被除数:
a÷b=c 当b=1时;c=a
三、分数除法混合运算
1、混合运算用梯等式计算;等号写在第一个数字的左下角。
2、运算顺序:
①连除:
同级运算;按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数;等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算;乘、除法为二级运算。
②混合运算:
没有括号的先乘、除后加、减;有括号的先算括号里面;再算括号外面。
(a±b)÷c=a÷c±b÷c
第四单元比
比:
两个数相除也叫两个数的比
1、比式中;比号(∶)前面的数叫前项;比号后面的项叫做后项;比号相当于除号;比的前项除以后项的商叫做比值。
连比如:
3:
4:
5读作:
3比4比5
2、比表示的是两个数的关系;可以用分数表示;写成分数的形式;读作几比几。
例:
12∶20==12÷20==0.6 12∶20读作:
12比20
区分比和比值:
比值是一个数;通常用分数表示;也可以是整数、小数。
比是一个式子;表示两个数的关系;可以写成比;也可以写成分数的形式。
3、比的基本性质:
比的前项和后项同时乘以或除以相同的数(0除外);比值不变。
4、化简比:
化简之后结果还是一个比;不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比;用前项后项同时乘分母的最小公倍数;再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、两个小数的比;向右移动小数点的位置;也是先化成整数比。
5、求比值:
把比号写成除号再计算;结果是一个数(或分数);相当于商;不是比。
6、比和除法、分数的区别:
除法:
被除数除号(÷)除数(不能为0)商不变性质除法是一种运算
分数:
分子分数线(—)分母(不能为0)分数的基本性质分数是一个数
比:
前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系
商不变性质:
被除数和除数同时乘或除以相同的数(0除外);商不变。
分数的基本性质:
分子和分母同时乘或除以相同的数(0除外);分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:
把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量;先画出单位“1”;标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图;部分和整体的关系画一条线段图。
第五单元圆
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:
外形美观;易滚动。
3、圆心O:
圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后;折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
半径r:
连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里;有无数条半径;且所有的半径都相等。
半径确定圆的大小。
直径d:
通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里;有无数条直径;且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:
d=2r或 r=d÷2
4、等圆:
半径相等的圆叫做同心圆;等圆通过平移可以完全重合。
同心圆:
圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:
如果一个图形沿着一条直线对折;两侧的图形能够完全重合;这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:
半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:
长方形
有三条对称轴的图形:
等边三角形
有四条对称轴的图形:
正方形
有无条对称轴的图形:
圆;圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:
定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长;周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:
圆的周长与直径的比值是一个固定值;叫做圆周率;用字母π表示。
即:
圆周率π=周长÷直径≈3.14
所以;圆的周长(c)=直径(d)×圆周率(π)—周长公式:
c=πd;c=2πr
圆周率π是一个无限不循环小数;3.14是近似值。
3、周长的变化的规律:
半径扩大多少倍直径也扩大多少倍;周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份;剪开拼成长方形;份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:
圆的面积=圆的周长的一半(πr)×圆的半径(r)
S圆=πr×r=πr2
2、几种图形;在面积相等的情况下;圆的周长最短;而长方形的周长最长;反之;在周长相等的情况下;圆的面积则最大;而长方形的面积则最小。
周长相同时;圆面积最大;利用这一特点;篮子、盘子做成圆形。
3、圆面积的变化的规律:
半径扩大多少倍;直径、周长也同时扩大多少倍;圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:
每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。
因为两条直跑道长度相等;所以;起跑线不同;相邻两条跑道起跑线也不同;间隔的距离是:
2×π×跑道宽度。
一个圆的半径增加a厘米;周长就增加2πa厘米。
一个圆的直径增加b厘米;周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长;它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第六单元百分数
(一)
一、百分数的意义:
表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫百分比或百分率;百分数不能带单位。
注意:
百分数是专门用来表示一种特殊的倍比关系的;表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:
都可以用来表示两个量的倍比关系。
(2)区别:
意义不同:
百分数只表示倍比关系;不表示具体数量;所以不能带单位。
分数不仅表示倍比关系;还能带单位表示具体数量。
百分数的分子可以是小数;分数的分子只可以是整数。
注意:
百分数在生活中应用广泛;所涉及问题基本和分数问题相同;分母是100的分数并不是百分数;必须把分母写成“%”才是百分数;所以“分母是100的分数就是百分数”这句话是错误的。
“%”的两个0要小写;不要与百分数前面的数混淆。
一般来讲;出勤率、成活率、合格率、正确率能达到100%;出米率、出油率达不到100%;完成率、增长了百分之几等可以超过100%。
一般出粉率在70%、80%;出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:
小数点向左移动两位;去掉“%”。
(2)小数化百分数:
小数点向右移动两位;添上“%”。
(3)百分数化分数:
先把百分数写成分母是100的分数;然后再化简成最简分数。
(4)分数化百分数:
分子除以分母得到小数;(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:
把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:
分子除以分母。
二、百分数应用题
1、求常见的百分率;如:
达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几;实际生活中;人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:
(甲-乙)÷乙
求乙比甲少百分之几:
(甲-乙)÷甲
3、求一个数的百分之几是多少。
一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少;求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:
几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:
国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
第七单元扇形统计图的意义
1、扇形统计图的意义:
用整个圆的面积表示总数;用圆内各个扇形面积表示各部分数量同总数之间关系;也就是各部分数量占总数的百分比;因此也叫百分比图。
2、常用统计图的优点:
(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化;还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
第八单元数学广角--数与形
2+4+6+8+10+12+14+16+18+20=(110)
规律:
从2开始的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110
从1开始的连续奇数的和正好是这串数个数的平方。