机器人制造中常用的7大传感器技术.docx
- 文档编号:11563254
- 上传时间:2023-03-19
- 格式:DOCX
- 页数:4
- 大小:19.18KB
机器人制造中常用的7大传感器技术.docx
《机器人制造中常用的7大传感器技术.docx》由会员分享,可在线阅读,更多相关《机器人制造中常用的7大传感器技术.docx(4页珍藏版)》请在冰豆网上搜索。
机器人制造中常用的7大传感器技术
机器人制造中常用的7大传感器技术
传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。
对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。
我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。
传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。
传感器的动态特性则指的是对于输入量随着时间变化的响应特性。
动态特性通常采用传递函数等自动控制的模型来描述。
通常,传感器接收到的信号都有微弱的低频信号,夕卜界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。
物理传感器
物理传感器是检测物理量的传感器。
它是利用某些物理效应,把被测量的物理量转化成为便
于处理的能量形式的信号的装置。
其输出的信号和输入的信号有确定的关系。
主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。
作为例子,让我们看看比较常用的光电式传感器。
这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。
其主要的原理是光电效应:
当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。
显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。
这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。
这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就
不是很复杂了。
其它的物理传感器的原理都可以类比于光电式传感器。
物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。
比如血压测量是医学测量中的最为常规的一种。
我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。
测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。
在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。
让我们再看看呼吸测量技术。
呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。
比如在使用用于测量呼吸
频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。
再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。
体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。
热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。
由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。
这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。
从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。
传感器的发展方向是多功能、有图像的、有智能的传感器。
传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效
光纤传感器
近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。
在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。
光纤具有很多优异的性能,例如:
抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信
丿息、。
光纤传感器是最近几年出现的新技术,可以
用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。
在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。
目前光纤传感器已经有70
多种,大致上分成光纤自身传感器和利用光纤的传感器。
所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。
外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。
测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位发生变化,根据这个变化就可检测出被测量的变化。
光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。
利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。
光纤声传感器就是一种利用光纤自身的传
感器。
当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。
声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。
光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。
如图就是光纤传感器涡轮流量计的原理。
另外一个大类的光纤传感器是利用光纤的传感器。
其结构大致如下:
传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。
在这种传感器系统中,传统的传感器和光纤相结合。
光纤的导入使得实现探针化的遥测提供了可能性。
这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。
光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。
仿生传感器
仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。
这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。
这种传感器的特点是机能高、寿命长。
在仿生传感器中,比较常用的是生体模拟的传感器。
仿生传感器按照使用的介质可以分为:
酶传感器、微生物传感器、细胞器传感器、组织传感器等。
在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。
在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。
下面就以尿素传感器为例子介绍仿生传感器的应用。
尿素传感器,主要是由生体膜及其离子通道两部分构成。
生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。
当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。
其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。
生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。
PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。
生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。
尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。
目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。
在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。
我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。
红外传感器
红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。
红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:
(1)辐射计,用于辐射和光谱测量;
(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图象;(4)红外测距和通信系统;混合系统,是指以上各类系统中的两个或者多个的组合。
红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。
下面以热探测器为例子来分析探测器的原理。
热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。
检测其中某一性能的变化,便可探测出辐射。
多数情况下是通过热电变化来探测辐射的。
当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。
(来源:
机器人网)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器人 制造 常用 传感器 技术