新青岛版五上数学第五单元《多边形的面积》完整教案.doc
- 文档编号:1153342
- 上传时间:2022-10-18
- 格式:DOC
- 页数:24
- 大小:227.72KB
新青岛版五上数学第五单元《多边形的面积》完整教案.doc
《新青岛版五上数学第五单元《多边形的面积》完整教案.doc》由会员分享,可在线阅读,更多相关《新青岛版五上数学第五单元《多边形的面积》完整教案.doc(24页珍藏版)》请在冰豆网上搜索。
单元备课
年级:
五年级科目:
数学教师:
时间:
2015.11
主题
生活中的多边形------多边形的面积
单元序号
五
单元
知识
结构
本单元知识是在学生学习了长方形、正方形、三角形、平行四边形、梯形的特征及长方形、正方形的面积计算的基础上进行教学的,是今后学习立体图形的基础。
平行四边形、三角形、梯形的面积计算是几何与图形领域中的重要内容,在日常生活中有着广泛的应用。
教
学
目
标
1、通过观察操作认识平行四边形和梯形;掌握平行四边形、三角形和梯形的面积的计算公式,并能正确计算相应图形的;了解简单组合图形面积的计算方法。
2、概括能力,渗透转化思想,发展空间观念。
3、能用有关图形的面积计算公式解决简单的实际问题。
在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。
重点
探索平行四边形、三角形、梯形的面积计算公式。
难点
用割补的方法计算简单组合图形的面积。
课时
安排
信息窗一、平行四边形的面积2课时
信息窗二、三角形的面积2课时
信息窗三、梯形的面积2课时
信息窗四、组合图形的面积2课时
相关链接、公顷与平方千米的认识2课时
关注我们的生活空间1课时共计11课时
课时教案
授课内容
平行四边形的面积
课型
新授
课时
第一课时
教
学
目
标
1、掌握平行四边形的面积计算公式的推导过程及计算方法,并能正确计算平行四边形的面积。
2、经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3、能运用平行四边形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
重点
难点
重点:
探究并推导平行四边形的面积计算公式,并能正确运用。
难点:
理解和掌握用割补法推导平行四边形的面积公式,并能解决实际问题。
教学用具
课件、平行四边形的框架、不同形状的平行四边形的纸单、剪刀
教学过程
一、复习旧知
1、平行四边形的定义、特征
2、长方形的面积计算公式
今天我们在此基础上一起探究平行四边形的面积。
二、创设情景,探究新知
(一)谈话:
提出问题工人叔叔要给楼梯的护栏安上玻璃,你能帮他们计算出玻璃的面积吗?
1、谈话:
求玻璃的面积就是求平行四边形的面积。
咱们先来猜一猜怎样计算平行四边形的面积?
在猜之前我们先来玩玩我们上节课制作的可活动的平行四边形.
一边玩一边想:
平行四边形和以前学过的那个图形是近邻?
(长方形)
现在来猜一猜怎样计算平行四边形的面积?
2、学生交流想法及猜测依据.
3、那你想用什么方法来验证你的猜想?
(二)实验
1、谈话:
同学们各抒己见,到底你们的猜想对不对呢?
咱们小组一起想办法来实验验证一下吧!
2、分组动手验证
为学生提供学具(平行四边形纸板、方格纸、直尺、剪刀)学生先讨论操作方法,再动手合作完成;教师巡视。
(三)验证
1、汇报结果:
方法1:
数方格
方法2:
转化
2、肯定两种方法的可行性,鼓励学生利用旧知识解决新问题的方法。
3、深化转化的方法。
根据学生的汇报,教师提问:
(1)为什么转化成长方形?
(2)为什么要沿高剪开?
(3)观察几种不同的割补方法有什么共同点?
(4)是不是所有的平行四边形只要沿高剪开都能用割补的方法转化成长方形呢?
重新取一个平行四边形动手剪一剪、拼一拼,验证。
4、电脑演示:
为什么一定要沿高剪开?
演示步骤:
(1)沿着高剪开就出现了直角,4个角都是直角是长方形的特征。
(2)两组对边分别平行而且相等,平移后一定重合。
(3)依据平行四边形和长方形特征之间的联系,把平行四边形转化为长方形。
(4)小结:
我们依据图形的特征,把平行四边形转化成与它面积相等的长方形,但实际上,我们计算平行四边形的面积的时候,总不能拿剪刀先去割补成长方形,然后在计算吧?
比如:
我们要求的平行四边形玻璃的面积就不能用剪刀割补。
因此,我们应该寻求计算平行四边形面积的公式。
(四)结论
1、建立联系,推导公式
对应长方形和平行四边形,讨论:
平行四边形和长方形的联系,进行猜测与合情推理。
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
2、利用公式解决课前问题:
平行四边形玻璃的面积是多少?
学生独立解决,指名板演,集体订正。
三、巩固练习,加强应用
1、自主练习第4题
2、自主练习第5题
3、自主练习第8题
四、回顾反思,总结提升
1、学生谈本节课的收获
2、教师总结:
强调利用转化的方法解决新问题.
板书
设计
平行四边形的面积计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
教
学
反
思
这节课也有几个地方联系不够紧密,新课转折不够严密,练习强化不够具体,操作时间不够充分。
如果今后再上这节课,要注意练习的多样性,要注意语言表达严谨性,还要加强动手操作的训练,如让学生计算一些没有直接告诉底和高或近似平行四边形要求它的面积,让学生去量出需要的条件,有利于培养学生的综合运用知识和解决问题的能力。
在计算过程中强调底和高的对应关系。
课时教案
授课内容
平行四边形的面积
课型
练习
课时
第二课时
教
学
目
标
1、掌握平行四边形的面积计算公式的推导过程及计算方法,并能正确计算平行四边形的面积。
2、经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3、能运用平行四边形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
重点
难点
重点:
探究并推导平行四边形的面积计算公式,并能正确运用。
难点:
理解和掌握用割补法推导平行四边形的面积公式,并能解决实际问题。
教学用具
电子白板彩粉笔
教学过程
一、创设情景,提出问题
1、 出示教材情景图,回顾平行四边形的面积计算公式及推导过程。
2、 出示表中的信息:
根据有关信息,你能提出什么数学问题?
二、应用新知,解决实际问题
1、 要解决“这块玻璃的面积是多少平方米”你是怎么想的?
学生交流想法
2、 独立解决,教师巡视
3、 组织交流算法
三、巩固练习,加强应用
1、 自主练习第6题
2、 自主练习第9题
3、 补充练习:
(1)用木条钉成的长方形拉成一个平行四边形,它的高和面积()。
a、都比原来大b、都比原来小c、都与原来相等
(2)平行四边形的底扩大3倍,高缩小3倍,面积()
a、扩大3倍b、缩小3倍c、不变d、不好判断
4、自主练习第10题
(1)观察三个平行四边形,找出相同点和不同点
(2)独立计算各个平行四边形的面积,交流发现
(3)小结:
等底等高的平行四边形面积相等。
四、回顾全课,交流质疑
在本信息窗中你收获到了什么?
还有哪些不明白的问题?
板书
设计
平行四边形的面积
等底等高的平行四边形面积相等。
教
学
反
思
本节课的设计充分利用教材中所提供的习题,同时又挖掘了学生在应用中存在的问题作为补充练习。
让学生在学习的过程中充分感受到本节知识在生活中的广泛应用,在练习中发现学生对平行四边形到长方形所做的“剪拼”和“拉伸”两种变换方式中面积和周长的变化情况掌握不是很好,仍需练习。
课时教案
授课内容
三角形的面积
课型
新授
课时
第三课时
教
学
目
标
1、掌握三角形的面积计算公式,并能正确计算三角形的面积。
2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
重点
难点
重点:
理解三角形面积计算公式,正确计算三角形的面积.
难点:
理解三角形面积公式的推导过程。
教学用具
多媒体课件,实物投影及展台
教学过程
一、回顾旧知,激趣引入:
1.出示平行四边形1.5厘米2厘米
提问:
(1)这是什么图形?
怎样计算平行四边形的面积。
(板书:
平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。
三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?
(揭示课题:
三角形面积的计算)
教师:
今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:
你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)讨论①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:
拼摆图形(突出旋转、平移)
教师提问:
每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:
拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。
(同时板书)
③这个平行四边形的底等于三角形的底。
(同时板书)
④这个平行四边形的高等于三角形的高。
(同时板书)
(5)三角形面积的计算公式是怎样推导出来的?
为什么要加上“除以2”?
(强化理解推导过程)
板书:
三角形面积=底×高÷2
(6)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(二)教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.2.订正答案(教师板书)
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
四、反馈练习
(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.
(二)计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
3.底是1.8米,高是.1.2米;
(三)判断
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。
()
2、等底等高的两个三角形,面积一定相等。
()
3、两个三角形一定可以拼成一个平行四边形。
()
4、三角形的底是3分米,高
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多边形的面积 青岛 版五上 数学 第五 单元 多边形 面积 完整 教案