安徽高三数学考试大纲.docx
- 文档编号:11424484
- 上传时间:2023-03-01
- 格式:DOCX
- 页数:20
- 大小:24.46KB
安徽高三数学考试大纲.docx
《安徽高三数学考试大纲.docx》由会员分享,可在线阅读,更多相关《安徽高三数学考试大纲.docx(20页珍藏版)》请在冰豆网上搜索。
安徽高三数学考试大纲
如何应对2012年高考的新变化?
一句话:
夯实基础,以不变应万变!
研读安徽《考试说明》及剖析近三年安徽高考试卷考点覆盖情况可以看出如下的一些特点:
1、侧重于支撑学科体系的主干内容的考查:
函数、数列、不等式、三角、立体几何、解析几何、概率统计是高中数学的主干内容,也是高考所考查的重点。
核心知识是不会有意识回避的,诸如函数的图像与性质、三角函数简单的变形、不等式的应用、等差(等比)数列、曲线与方程(直线、圆、椭圆)、空间中直线与平面的位置关系、几何体的有关计算、概率统计在实际生活中的应用等,在每年的试题中都会重复考查,相信在2011年的试题中也会有所体现。
2、侧重于必修模块的考查,文科考试范围仍是:
必修1至5、选修1-1、选修1-2
4、考生还需要关注一些尚未出现在试题中的知识点——必修1:
幂函数、二分法、函数值域、函数模型的应用;必修2:
空间几何体的直观图、球的面积与体积、空间直角坐标系;必修3:
系统抽样、对立事件、互斥事件;必修4:
任意角三角函数定义、扇形面积、正切函数图像、两角和差的正切公式;必修5:
解三角形的实际应用、数列求和(裂项法);选修2-1:
全称量词与特称量词;选修2-2:
类比推理、复合函数求导、导数与切线、共轭复数;选修2-3:
两点分布、二项分布、独立性检验;选修4-4:
椭圆(双曲线、抛物线)的参数方程、压缩变换、柱坐标系与球坐标系。
题型猜想
2012年安徽高考主干知识考查题型猜想:
1、三角函数:
三角函数的恒等变形、性质图像;设计三角形、向量的综合问题。
2、概率统计:
概率与统计问题主要考查随机想象、或然与必然的思想。
文科考查概率计算,理科考查概率计算和随机变量的分布列与数学期望。
3、立体几何:
考查直线和平面的位置关系的判断,计算距离、角度、面积、体积的相关计算。
检查空间想象能力、推理论证能力,联系空间向量,转化为代数运算问题。
4、解析几何:
2011年解析几何注意可能考查:
双曲线、求动点轨迹(椭圆)方程(参数法)、直线与椭圆关系。
其中,平面解析几何高考命题特点为题型相对稳定,一般考查一个小题,一个大题,文理科差异明显;一个小题着重考查基本概念与性质,一般会是很简单的题目,从内容上考查点有
(1)直线(方程、斜率、倾斜角、夹角、距离、平行与垂直、线性规划),
(2)对称问题,(3)直线与圆的位置关系,(4)圆锥曲线的概念与性质,(5)解答题考查直线与圆锥曲线的位置关系,有一定综合性,难度也较大,但入口一般较浅,即第一小问容易得分,(6)坐标系联系了代数与几何,解析方法是其本质所在,重点考查曲线的方程的探求、方程的曲线的性质,轨迹问题、参数范围、定值问题、存在性问题、最值问题是常见的考查热点,新考查避免出现韦达定理的题目,望引起关注。
5、数列、不等式和数学归纳法综合考查,是典型的安徽特色,每年都展现数学思维精彩之美。
等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系是考查的热门话题,与比较大小结合、与不等式证明联系常考常新。
文理科的区别较大,理科多有出现在压轴题位置的卷型。
6、函数、导数与不等式:
函数是数学的主体知识,是考查的核心内容,与导数结合,判断函数的单调性,求函数的最值,参数取值范围的探求,对参数的分类讨论以及代数推理能力是考查的热点之一。
(一)必考内容与要求
1.集合
(1)集合的含义与表示
①了解集合的含义、元素与集合的属于关系.
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
③能使用韦恩(Venn)图表达集合的关系及运算.
2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
(1)函数
①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)
表示函数.
③了解简单的分段函数,并能简单应用.
④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶
性的含义.
⑤会运用函数图像理解和研究函数的性质.
(2)指数函数
①了解指数函数模型的实际背景.
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.
④知道指数函数是一类重要的函数模型.
(3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常
用对数;了解对数在简化运算中的作用.
②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点.
③知道对数函数是一类重要的函数模型;
④了解指数函数
与对数函数
互为反函数
(4)幂函数
①了解幂函数的概念.
②结合函数的图像,了解它们的变化情况.
(5)函数与方程
①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存
在性及根的个数.
②根据具体函数的图像,能够用二分法求相应方程的近似解.
(6)函数模型及其应用
①了解指数·函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增
长等不同函数类型增长的含义.
②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使
用的函数模型)的广泛应用.
3.立体几何初步
(1)空间几何体
①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活
中简单物体的结构.
②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,
能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空
间图形的不同表示形式.
④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作
严格要求).
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
(2)点、直线、平面之间的位置关系
①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
◆公理1:
如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
◆公理2:
过不在同一条直线上的三点,有且只有一个平面.
◆公理3:
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共
直线.
◆公理4:
平行于同一条直线的两条直线互相平行.
◆定理:
空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互
补.
②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直
的有关性质与判定.
理解以下判定定理.
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直
线平行.
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
◆垂直于同一个平面的两条直线平行.
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
4.平面解析几何初步
(1)直线与方程
①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
③能根据两条直线的斜率判定这两条直线平行或垂直.
④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般
式),了解斜截式与一次函数的关系.
⑤能用解方程组的方法求两条相交直线的交点坐标.
⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
(2)圆与方程
①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判
断两圆的位置关系.
③能用直线和圆的方程解决一些简单的问题.
④初步了解用代数方法处理几何问题的思想.
(3)空间直角坐标系
①了解空间直角坐标系,会用空间直角坐标表示点的位置.
②会推导空间两点间的距离公式.
5.算法初步
(1)算法的含义、程序框图
①了解算法的含义,了解算法的思想.
②理解程序框图的三种基本逻辑结构:
顺序、条件分支、循环.
(2)基本算法语句
理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含
义.
6.统计
(1)随机抽样
①理解随机抽样的必要性和重要性.
②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
(2)用样本估计总体
①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎
叶图,理解它们各自的特点.
②理解样本数据标准差的意义和作用,会计算数据标准差.
③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.
④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字
特征,理解用样本估计总体的思想.
⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
(3)变量的相关性
①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.
②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.
7.概率
(1)事件与概率
①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率
的区别.
②了解两个互斥事件的概率加法公式.
(2)古典概型
①理解古典概型及其概率计算公式.
②会计算一些随机事件所含的基本事件数及事件发生的概率.
(3)随机数与几何概型
①了解随机数的意义,能运用模拟方法估计概率.
②了解几何概型的意义.
8.基本初等函数Ⅱ(三角函数)
(1)任意角的概念、弧度制
①了解任意角的概念.
②了解弧度制概念,能进行弧度与角度的互化.
(2)三角函数
①理解任意角三角函数(正弦、余弦、正切)的定义.
②能利用单位圆中的三角函数线推导出
α,π±α的正弦、余弦、正切的诱导公式,能画出
的图像,了解三角函数的周期性.
③理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及
与x轴交点等).理解正切函数在区间内的单调性.
④理解同角三角函数的基本关系式:
⑤了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.
⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实
际问题.
9.平面向量
1)平面向量的实际背景及基本概念
①了解向量的实际背景.
②理解平面向量的概念,理解两个向量相等的含义.
③理解向量的几何表示.
(2)向量的线性运算
①掌握向量加法、减法的运算,并理解其几何意义.
②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
③了解向量线性运算的性质及其几何意义.
(3)平面向量的基本定理及坐标表示
①了解平面向量的基本定理及其意义.
②掌握平面向量的正交分解及其坐标表示.
③会用坐标表示平面向量的加法、减法与数乘运算.
④理解用坐标表示的平面向量共线的条件.
(4)平面向量的数量积
①理解平面向量数量积的含义及其物理意义.
②了解平面向量的数量积与向量投影的关系.
③掌握数量积的坐标表达式,会进行平面向量数量积的运算.
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
(5)向量的应用
①会用向量方法解决某些简单的平面几何问题.
②会用向量方法解决简单的力学问题与其他一些实际问题.
10.三角恒等变换
(1)和与差的三角函数公式
①会用向量的数量积推导出两角差的余弦公式.
②能利用两角差的余弦公式导出两角差的正弦、正切公式.
③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、
余弦、正切公式,了解它们的内在联系.
(2)简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对
这三组公式不要求记忆).
11.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
(2)应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问
题.
12.数列
(1)数列的概念和简单表示法
①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
②了解数列是自变量为正整数的一类函数.
(2)等差数列、等比数列
①理解等差数列、等比数列的概念.
②掌握等差数列、等比数列的通项公式与前n项和公式.
③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应
的问题.
④了解等差数列与一次函数、等比数列与指数函数的关系.
13.不等式
(1)不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式
①会从实际情境中抽象出一元二次不等式模型.
②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题
①会从实际情境中抽象出二元一次不等式组.
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(4)基本不等式:
①了解基本不等式的证明过程.
②会用基本不等式解决简单的最大(小)值问题.
14.常用逻辑用语
(1)命题及其关系
①理解命题的概念.
②了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的
相互关系.
③理解必要条件、充分条件与充要条件的意义.
(2)简单的逻辑联结词
了解逻辑联结词“或”、“且”、“非”的含义.
(3)全称量词与存在量词
①理解全称量词与存在量词的意义.
②能正确地对含有一个量词的命题进行否定.
15.圆锥曲线与方程
(1)圆锥曲线
①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.
③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.
④了解圆锥曲线的简单应用.
⑤理解数形结合的思想.
(2)曲线与方程
了解方程的曲线与曲线的方程的对应关系.
16.空间向量与立体几何
(1)空间向量及其运算
①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分
解及其坐标表示.
②掌握空间向量的线性运算及其坐标表示.
③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.
(2)空间向量的应用
①理解直线的方向向量与平面的法向量.
②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.
③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).
④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解
向量方法在研究几何问题中的应用.
17.导数及其应用
(1)导数概念及其几何意义
①了解导数概念的实际背景.
②理解导数的几何意义.
(2)导数的运算
①能根据导数定义,求函数
(c为常数)的导数.
②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导
数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
·常见基本初等函数的导数公式和常用导数运算公式:
(C为常数);
n∈+;;(a>0,且a≠1);
·常用的导数运算法则:
法则1法则2法则3
(3)导数在研究函数中的应用
①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区
间(其中多项式函数一般不超过三次).
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小
值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式
函数一般不超过三次).
(4)生活中的优化问题.
会利用导数解决某些实际问题..
(5)定积分与微积分基本定理
1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.
②了解微积分基本定理的含义.
18.推理与证明
(1)合情推理与演绎推理
①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学
发现中的作用.
②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推
理.
③了解合情推理和演绎推理之间的联系和差异.
(2)直接证明与间接证明
①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过
程、特点.
②了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点.
(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
19.数系的扩充与复数的引入
(1)复数的概念
①理解复数的基本概念.
②理解复数相等的充要条件.
③了解复数的代数表示法及其几何意义.
(2)复数的四则运算
①会进行复数代数形式的四则运算.
②了解复数代数形式的加、减运算的几何意义.
20.计数原理
(1)分类加法计数原理、分步乘法计数原理
①理解分类加法计数原理和分步乘法计数原理;
②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.
(2)排列与组合
①理解排列、组合的概念.
②能利用计数原理推导排列数公式、组合数公式.
③能解决简单的实际问题.
(3)二项式定理
①能用计数原理证明二项式定理.
②会用二项式定理解决与二项展开式有关的简单问题.
21.概率与统计
(1)概率
①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现
象的重要性.
②理解超几何分布及其导出过程,并能进行简单的应用.
③了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分
布,并能解决一些简单的实际问题.
④理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量
的均值、方差,并能解决一些实际问题.
⑤利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.
(2)统计案例
了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.
(1)独立性检验
了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.
(2)回归分析
了解回归的基本思想、方法及其简单应用.
(二)选考内容与要求
1.几何证明选讲
(1)了解平行线截割定理,会证明并应用直角三角形射影定理.
(2)会证明并应用圆周角定理、圆的切线的判定定理及性质定理.
(3)会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.
(4)了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证平面与圆
柱面的截线是椭圆(特殊情形是圆).
(8)了解定理(5)③中的证明,了解当β无限接近α时,平面π的极限结果.
2.坐标系与参数方程
(1)坐标系
①理解坐标系的作用.
②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示
点的位置的区别,能进行极坐标和直角坐标的互化.
④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方
程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时
选择适当坐标系的意义.
⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表
示点的位置的方法相比较,了解它们的区别.
(2)参数方程
①了解参数方程,了解参数的意义.
②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.
③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.
④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨
道中的作用.
3.不等式选讲
(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:
①∣a+b∣≤∣a∣+∣b∣;
②∣a-b∣≤∣a-c∣+∣c-b∣;
③会利用绝对值的几何意义求解以下类型的不等式:
∣ax+b∣≤c;
∣ax+b∣≥c;
∣x-a∣+∣x-b∣≥c.
(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.
(3)会用参数配方法讨论柯西不等式的一般情况:
(4)会用向量递归方法讨论排序不等式.
(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.
(6)会用数学归纳法证明贝努利不等式:
为大于1的正整数),了解当n为大于1的实数时贝努利不等式也成立.
(7)会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特
定函数的极值.
(8)了解证明不等式的基本方法:
比较法、综合法、分析法、反证法、放缩法.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安徽 数学 考试 大纲