小学数学新课标的十大核心概念汇编.docx
- 文档编号:11296184
- 上传时间:2023-02-26
- 格式:DOCX
- 页数:18
- 大小:33.74KB
小学数学新课标的十大核心概念汇编.docx
《小学数学新课标的十大核心概念汇编.docx》由会员分享,可在线阅读,更多相关《小学数学新课标的十大核心概念汇编.docx(18页珍藏版)》请在冰豆网上搜索。
小学数学新课标的十大核心概念汇编
培养学生良好的和习惯,突出严、细、实。
引导学生形成正确的概念,掌握正确的运算方法。
《小学数学新课程标准》以全新的观点将小学数学内容归纳为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个学习领域,特别突出地强调了10个学习内容的核心概念,分别是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想以及应用意识和创新意识。
下面结合我的教学实践浅谈我对这些核心概念的认识:
一、数感是人的一种基本数学素养
数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,又能以数学的思维研究现实,能用数学的方法解决实际问题。
数感主要表现在:
理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
培养和发展学生的数感,应该注意以下两个方面:
1、引导学生联系自己身边具体、有趣的事物;2、注重解决实际问题。
二、在解决问题的过程中发展学生的符号感
符号感是人对符号的意义、符号的作用的理解,以及主动地使用符号的意识和习惯。
符号感主要表现在:
能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
发展学生的符号感可以同时从两方面进行:
1、结合数学内容,及时教给学生一些数学符号;2、鼓励学生创造性地使用自己的独特符号。
三、空间观念是培养学生初步的创新精神和实践能力需要的基本要素
空间观念表现为对现实世界里的物体的形状、大小、位置、变化及相互关系的理解与把握。
空间观念主要表现在:
能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化。
能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系。
能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
在实际教学中,我们要把发展学生的空间观念落到实处,增加学生动手实践的机会。
四、数据分析观念的发展与培养
数据分析是指:
在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。
体会数据中蕴含着的信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。
一方面对于同样的事物、每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,所以说,数据分析是统计的核心。
数据分析观念是人对数据统计活动的体会与理解,是自觉应用统计方法解决问题的意识。
数据分析观念主要表现在:
能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
发展小学生的数据分析观念,可采用的方法:
1、组织学生经历统计活动的全过程;2、培养学生从报刊、杂志、电视等媒体中获取信息的意识,读懂统计图表,并能与同伴交流。
五、大力培养学生的应用意识
应用意识是综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题。
应用意识主要表现在:
认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
培养学生的应用意识,应注意以下几点:
1、指导学生选好题目;2、明确活动目标;3、强调自主性与交流的要求;4、总结与评价。
六、注重发展学生的推理能力
合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。
归纳推理、类比推理和统计推理是合情推理的主要形式。
推理能力主要表现在:
能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。
培养小学生的推理能力,应该做到以下两点:
首先,把培养学生的推理能力贯穿在日常数学教学中。
其次,把推理能力的培养落实到《标准》的四个内容领域之中。
曾子墨是凤凰卫视节目主持人,她年轻漂亮,事业有成。
其实,曾子墨能取得今天的成就和她自身的数学素养有很大关系,1996年,在参加全球最负盛名的投资银行摩根斯坦利的面试时,一位分析员问她:
“如果你找到一份工作,薪水有两种支付方式:
一年12000美元,一次性全部给你;同样一年12000美元,按月支付,每月1000美元。
你怎么选择?
”
这两种支付方式总数相同,按常规理解,无所谓随便选择一种就行。
但曾子墨却说:
“这取决于现在的实际利率。
如果实际利率是正数,我选第一种;如是负数,我选择第二种;如果是零,两者一样。
同时,我还会考虑机会成本,即便实际利率是负数,假如有好的投资机会能带来更多的回报,我还是选择第一种。
”接着,那位分析员又提问:
“9枚硬币,有一枚重量和其他的不一样,你用两只手,至少几次可以找出这枚硬币?
”曾子墨毫不犹豫地回答:
“三次。
”“还是9枚硬币,改变其中的一个条件,两次就可以找出这枚特殊的硬币,这个条件应该怎样改变?
”“告诉我这枚特殊的硬币比其它的硬币重还是轻。
”
就这样,曾子墨以她出色的表现,征服了所有分析员。
最终在她的评定书上写的是:
不惜代价,一定要雇佣!
数学素养听起来好像很深奥、很生疏,其实它时时渗透在我们的日常生活中,如:
商场打折信息、家庭投资理财问题等。
那什么是数学素养?
对于数学素养的解释,到目前为止还没有一个严格的、统一的定义。
有人认为“数学素养”是人在先天基础上,受后天环境、数学教育等影响,所获得的数学知识技能、数学思想方法、数学能力、数学观念和数学思维品质等融于身心的一种比较稳定的心理状态。
用南开大学顾沛教授的话说:
“数学素养”就是把所学的数学知识都排出或忘掉后剩下的东西。
小学生的数学素养包括数感、符号意识、空间观念、统计观念、数学应用意识五种数学意识,数学思维、数学理解、数学交流、解决问题四种数学能力以及数学价值观的发展。
下面我从以下三个方面和大家谈谈我对培养学生数学素养的肤浅认识:
一、用数学的视角去认识世界。
二、用数学的方式去思考问题。
三、用数学的方法解决问题。
首先看第一个方面:
用数学的视角去认识世界——数学意识的培养。
什么是“数学意识”呢?
举一个例子,假如学生会计算“48÷4”,说明学生具有除法的知识与技能。
学生会解“有48个苹果,平均每人分4个苹果,可以分给多少人?
”,说明学生具有一定的分析问题、解决问题的能力,但都不能说明学生具有数学意识。
而在体育课上,48位学生在跳长绳,教师共准备了4根长绳,由此学生能想到“48÷4”这个算式,这就说明学生具有一定的数学意识了。
(一) 理解数的意义与数的联系,培养数感。
在北京自然博物馆有一块展板:
“1983年初在东北地区进行的航行调查表明,在7000平方米的山林中仅发现两只老虎,因此东北虎被列为一级保护动物。
”对外经贸大学的小杨认为:
一个标准的操场都比7000平方米大。
如果在7000平方米的范围里就有两只老虎,那么老虎的数量应该很多,怎么还会因此被列为一级保护动物呢?
那为什么那么多的参观者对此说明都熟视无睹,而小杨却能发现其中的问题呢?
一方面我认为小杨善于观察、思考,另一方面说明小杨有很好的数感。
“数感”,就是对数的本质的理解和感觉。
数的本质是“多与少”或者“大与小”,从而过渡到数的顺序。
有关“数感”问题我们可以追溯到动物的感知,比如说—条狗,它可能敢与一匹狼争斗,但如果有两匹狼它就会害怕,如果面对一群狼它就会逃跑。
这说明动物也知道“多与少”。
在《数:
科学的语言》一书中记载了这样一件事:
一只乌鸦在一家庄园的望楼顶上建了个鸟巢,庄园主对此很生气,决心杀死这只乌鸦。
可是,每当庄园主走进望楼,乌鸦就离巢而去,直到庄园主走出望楼才回巢。
庄园主就想了一个办法,他找来—个朋友,两人一起进去,然后走出一人,希望留下一个人去杀乌鸦,但是乌鸦并没有上当回巢。
后来又三人进去两人出来,四人进去三人出来,依然如故。
直到五人进去四人出来,乌鸦才分辨不清,回巢了。
这说明乌鸦关于数的悟性至少可以分辨到4或5。
如果人不会数数的话,能辨别到几呢?
实验表明,人也只能辨别到4或5。
由此可以推断,在数学方面,发明了计数之后,人类才与动物产生了本质的差异。
有了“多少”这一概念,人类才能理解“有序”、“后继数”等概念。
从l开始,借助“后继数”,便形成了自然数系;通过自然数的四则运算,形成了有理数系;通过有理数的代数运算,最终形成了实数系。
所以,“多少”的概念,以及由其自然产生而不是通过运算产生的自然数,才是数学最本质的概念,也是小学数学的根基。
因此,培养小学生的“数感”是低学段教学的重点。
其实学生入学前就已经知道了不少数,但那只是他们凭生活经验认识的数,对数他们只是有一种非常“肤浅”的表层认识,我们的任务就是让这些成人看起来非常抽象的数,在孩子的脑子中逐渐丰富起来,富有“数的内涵”。
一年级上册第五单元学习11~20各数的认识,本节课的教学重点是,让学生通过动手操作初步认识和数位“个位”、“十位”和计数单位“一”、“十”;理解同一数字在不同位置表示不同的数值。
一上课我通过猜数游戏引出“11”这个数,然后要求学生把11根小棒摆在桌面上,让别人一眼就能看出是11根。
当学生把11根分成10根和1根两部分后,接着让他们把10根捆在一起。
这时告诉大家,和同学们一样,数也有自己的位置,并出示数位筒,认识个位和十位。
1根小棒表示1个一应放在个位筒里,1捆小棒表示1个十应放在十位筒里。
另外,学生通过1个十和10个一的相互转化过程,体会“数位”“计数单位”概念的实际意义,建立“数位”和“计数单位”的概念。
同时,“数位筒”的教学又在不知不觉中对后面“份”的概念的教学起到了非常微妙的作用,从份的概念来分析,把这“10”根小棒捆成1捆,就是把10根小棒看成1份。
学完后我问学生当你看到20你想到了什么?
刘钰杰说:
“我穿20号的鞋子。
”刘翔宇说;“20十位上是2,个位上是0。
”杜雨萌说:
“我有20支新铅笔。
”丁中岚说:
“20比11大多了。
”如果我们不给孩子说的自由,大概就没机会知道孩子心中的数有如此丰富的内涵了。
(二)经历符号化过程,培养符号意识。
英国著名数学家罗素说过:
“什么是数学?
数学就是符号加逻辑。
”符号意识,主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。
学生在生活中能接触到很多像停车标志、奥运五环标志等用符号表示的情境,所以有一定的符号经验。
上学期学习“统计我们的鞋码”时,我就利用学生已有的符号经验,鼓励他们用自己喜欢的方式进行统计,有的学生写数,有的画“√”,还有的用“○、△”等图形表示。
记得王老师在教学“用数对确定位置”时,先通过呈现学生熟悉的教室里的座位这一具体场景,激活学生头脑中已有的描述物体位置的经验;通过交流,学生产生用一致的方式来表示位置的需求。
然后把具体的场景图逐步抽象成圆圈图、网络图这种平面图,并让经历用数对表示位置的过程。
这样学生就经历了“具体事物——个性化地符号表示——学会数学化表示”的学习过程,体会到引入符号的必要性以及数学符号的简洁与实用,培养了学生的符号意识,发展空间观念。
当然数学符号的产生和发展过程并不是一帆风顺的,如,阿拉伯数字的诞生和使用就是一个漫长的过程,我们可以结合数的认识的教学向学生介绍数字诞生的历史,让学生了解数字符号的发展史,感受数学文化的无穷魅力。
(三)实践操作与数学思考相结合,培养空间观念
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言描述画出图形等。
我们就生活在宇宙这个大空间里,如,你想邀请别人去你家做客,就要说清楚你家的方位及去你家的行走路线。
还有,我们的楼房,就要经历先有设计师把头脑中的实物抽象成平面图形,再由建筑师负责把它转化为实物的过程。
教学时,我们要充分利用学生已有的生活经验,找准发展空间观念的支点。
上学期在学习“方向与位置”时,我把学生带到操场上,利用学生已有的“太阳从东方升起”的生活经验,先确定东方,再来认识其他三个方向。
这样就把教学视野拓展到了生活空间,利用生活原型来有效促进学生空间观念的发展。
空间观念的发展不仅需要丰富的现实情境、而且需要大量的操作活动。
在教学“体积和容积”时,有位教师就利用从粉笔盒抽出粉笔和放回粉笔的动态过程,把抽象的数学概念具体化,让“物体占有空间的大小”变得可观察、可感受。
还有在学习“搭一搭”时,老师先出示两幅从物体前面和右面观察到的平面图:
前面:
右面:
然后让学生通过想一想、搭一搭、说一说等活动,知道有多种可能的情况,不能确定物体的具体形状。
这时老师又出示从上面看到的平面图。
上面:
最后,大家通过想一想、搭一搭确定了物体的形状。
在这里,教学过程把学生的观察、操作、想象、思考、交流等活动结合起来,发挥学生的空间想象力,实现了二维平面与三维空间之间的转化,有效促进了活动的内化及空间观念的形成。
(四)经历统计活动的全过程,培养统计观念
我们几乎每天都要和数据打交道,如:
“今日沪综指开于2845.33点,跌幅1.07%,成交额679.80亿元。
”“我国1.91亿亩作物受旱,422万人饮水困难”,对数据进行收集、整理、分析是我们每位公民的基本素养之一。
统计就是一个包括数据的收集、整理、描述和分析的完整过程。
小学生学习统计的核心目标是发展“统计观念”
统计观念的培养仅靠训练是难以形成的,必须让学生去亲身体验。
如,上学期学校举办“阳光女孩节”,我班就开展了一次“应多买些什么颜色的气球”的调查。
学生经历了收集数据、整理数据、描述数据,通过交流,作出决策的统计活动。
在活动中学生体会到统计的必要性以及统计的作用。
现代公共媒体已经大量使用统计图来表示信息,能看懂生活中常见的统计图表是现代公民重要的数学素养。
因此,进行统计教学时,应将学习重点放在引导学生读懂统计图表、会分析图表中的数据并进行必要的推理上,而不是放在制作统计图表上。
如,一位同学调查了自己班上的5位男同学,其中有4位同学喜欢打篮球,便得出结论他班80%的同学喜欢打篮球。
我们就要引导学生对数据来源、数据处理的方法以及由此得到的结论进行合理的质疑,使学生对统计数据有较全面、正确的认识。
(五)注重数学与生活的联系,培养数学应用意识
有一次,我的好朋友不好意思的问我:
在超市买东西时,你好不好看同一产品不同的包装的价格,然后比较一下哪个便宜再买?
其实,我们学知识为了什么?
不就是用吗?
学了不让它为我们的生活服务,我们学它干什么。
比如,同样是光明纯鲜牛奶:
大包装1000ml,8元/桶;小包装220ml,2元/盒。
通过计算1000÷8=1250(ml/元) 220÷2=110(ml/元)可以知道,同样1元钱,可以多喝15ml牛奶,如果家庭人口比较多,当然选择大包装合算。
什么是数学应用意识呢?
数学应用意识是应用数学知识、数学思想方法的心理倾向,主动尝试用数学知识、方法、策略、思想去思考和解决遇到的现实问题。
看来我这位朋友就有很好的数学应用意识。
在教学中我们要有意识的引导学生关注生活中的这些数学问题,让他们体会到学习数学的意义以及数学的应用价值,养成用数学的眼光观察生活的习惯。
培养学生的应用意识和实践能力,仅靠课堂上的学习体验是不够的,我们还要安排一些有意思的实践活动,把数学学习延伸到课外。
在认识“厘米和米”时,一位教师就安排了四次课外实践活动:
(一)请你和爸爸、妈妈一起用脚量一量你的小房间的长。
通过活动,让学生体验到同一物体用不同的长度单位量,会得到不同的结果;其次让学生在学习长度单位前,对长度单位先有一个广义的了解,并在与爸爸妈妈合作的过程中感受学习的快乐。
(二)请你和同桌一起用一拃来量一量课桌的长。
通过本活动,学生再一次体验到同一物体用不同的长度单位量,会得到不同的结果,同时让学生感受到就自己的一拃在量的过程中长短也在变化,这样量不准确,最好用一个比较准一点的工具来量。
(三)请你用数学书来量一量你的小房间和课桌的长。
通过这一活动,学生感悟到用同样的长度单位去量,可以比较物体的长短,但这样的长度单位在叙述时很不方便,适用范围也小,既不能量比较长的物体,如操场,也不能量比较小的物体,如橡皮,从而感受到需要有一种统一的测量工具和统一的长度单位。
(四)请你用尺子来量一量你的小房间和课桌的长。
通过这次活动,学生加深了对厘米和米的认识,同时建立了法定长度单位与生活中长度单位间的联系,熟练掌握了用尺子来量物体的长度的方法。
第二个方面:
用数学的方式思考问题——数学思维能力的培养。
(一) 数形结合,发展学生的形象思维
小学生的思维处于形象思维向抽象思维过渡的阶段。
数是形的抽象,形是数的表现。
“数形结合”能帮助学生生成正确的数学表象,促进学生的数学理解。
案例一:
“千克与克”的认识属于概念教学,内容相对比较抽象,学生理解有一定困难。
在学习千克的时候,我设计了一个找1千克的环节。
我让学生一只手掂着1千克重的洗衣粉,另一只手掂一掂袋子里的东西,估一估哪袋东西也重1千克。
人对物体质量的直观感知,除了掂一掂然后估一估之外,很重要的一种方式是根据具体实物的数量来进行简单推断。
因此,在评价学生“克与千克”知识掌握程度时,经常要考查学生“5个苹果约重()千克”、“1箱苹果重10()”。
我们大人根据一般的生活经验,都能做出简单的估计。
但刚上三年级的小学生,生活经验比较少,或者平时经历了但没有留心,临到做题时只能瞎猜。
而且同样质量的物体,每个物体的大小不同,物体的数量也不同。
这就要求教师在课堂上通过实践活动,唤醒学生的经验,提醒他们注意积累对质量的体验。
比如,学生掂、称出1千克苹果、面粉等后,让学生数一数、看一看,就能发现4~6个苹果约重1千克,2瓶矿泉水约重1千克,1千克黄豆(约4000粒)有几捧。
让学生将抽象的1千克数学概念与具体事物的数量、体积联系起来,能帮助学生有效建立1千克的质量概念,化抽象的概念为可以看得见的数学事实。
案例二:
在计算教学中我们不仅要让学生掌握计算方法,更重要的是要人学生明白算理,使学生不仅“知其然”,而且“知其所以然”,促进学生对数学的理解。
在小学阶段,加、减、乘、除的竖式写法是笔算教学的重要内容,其中除法的竖式相对特殊。
初次接触除法竖式是在二年级上册第七单元表内除法,由口算引入,数目简单,根据知识迁移规律,学生一般都会仿照加、减、乘法的竖式写法来写“除法竖式”。
如果我们非要学生再创造一种新的竖式写法,那么除法竖式只能成为教师一厢情愿硬塞给学生的东西,体现不出除法竖式的优势。
教学不应该是学生适应教师,而应该以学定教。
为了让学生体验到笔算除法的必要性,我在教学这节课时,改变了教材的呈现顺序,把二年级下册的有余数的笔算除法提前,也就是先教学有余数除法的竖式,再教学没有余数的。
教学过程是这样设计的:
1.分糖葫芦活动,把13串糖葫芦平均分给4个同学,每个同学分到几串,还剩几串?
2.用小棒代替糖葫芦分一分。
3.列横式计算:
13÷4=3(串)……1(串)。
4.加、减、乘法都有竖式,除法也能用竖式计算,让学生尝试写出来,结果多数同学不知怎样写,而我班李景渤这样创造:
13
÷ 4
3……1
这时,我写出正确的除法竖式让学生对比两者的不同,学生发现正确的写法能清楚的看出哪些是要分的,哪些是已经分的,哪些是剩余的,能更好的体现出分的过程。
接着结合分小棒的过程来介绍除法竖式的写法。
关于除法竖式的书写顺序,教材和教师用书都没有说明,我尝试按被除数、除号、除数、等于号、商的顺序来书写,这种书写过程与横式书写顺序一样,这样可以避免学生把除号里面的被除数和外面的除数位置搞错。
5.学生尝试练习除法竖式:
21÷5、20÷6、15÷3。
从有余数到无余数,从一般到特殊,学生顺利理解在15÷3的竖式中,被除数下面要再写一个15,是表示分掉了15个。
这节课先教学有余数的除法竖式,让学生产生用加、减法的竖式书写,余数没办法处理的矛盾,从而产生学习除法竖式的内心需求,同时也有助于学生理解除法竖式中各部分的意义。
案例三:
图形语言是形象思维的主要载体,运用“数形结合”办法解决问题就是把数学问题中的数量关系与空间形式结合起来进行思维。
例如,小朋友排队,小雨从前往后数,他自己是第8个。
又从后往前数,他是第5个。
这队共有多少个小朋友?
一部分学生一时难以解决,教师要引导学生画示意图解决,用图表示为:
前○○○○○○○△○○○○后,得到:
7+1+4=12(人)或8+4=12(人),化抽象为直观,使问题的数量关系更容易理解,找到简捷地解决问题的办法。
(二)精心组织数学活动,培养学生初步的推理能力
推理是由一个或几个已知判断得出新判断的思维过程。
根据小学生的年龄特征,小学生的推理能力应以合情推理为主。
伟大的科学家牛顿认为:
“没有大胆的猜想,就做不出伟大的发现。
”数学猜想是合情推理发展的基础。
“猜想——验证”是一种重要的推理策略。
在教学“圆锥的体积”时,老师要求学生把圆柱形的胡萝卜削成等高的圆锥,并猜测圆锥的体积与圆柱体积的关系。
有的认为是圆柱的1/2,有人认为是1/3,也有人认为介于1/2和1/3之间。
在上述案例中,学生借助观察与实验进行了大胆猜想;我们也可以运用类比提出猜想,如根据“长方体的体积=底面积×高”,可以类比推断出“圆柱的体积=底面积×高”。
由于合情推理的结果具有不确定性,所以我们要采用实例法和演绎法对结论进行论证,并以实例验证为主。
实例验证,主要是通过举例的方法进行,可以举反例,推翻原来的结论或猜想。
也可以举出正例,运用不完全归纳法验证猜想使原来的结论更加可靠。
下面我们来看学生是怎样验证“3的倍数的特征”的。
当学生根据2、5的倍数的特征猜测:
个位上是3、6、9的数是3的倍数后,学生就用反例进行了验证:
生1:
个位上是3、6、9的数不一定是3的倍数,如13、16、19都不是3的倍数。
生2:
像60、12、27等个位上不是3、6、9,但这些数都是3的倍数。
通过探索初步得出:
“一个数每个数位上的数字和是3的倍数,这个数就是3的倍数”这一结论后,学生又用“举例归纳”的方法进行了验证:
如有的学生发现“在1~100的自然数中,是3的倍数的,各位数位的数字和都是3的倍数。
110、145各数位数字之和不是3的倍数,这些数就不是3的倍数。
”最后,教师还引导学生利用3根小棒在数位表中摆数,用“操作归纳”的方法进一步验证了结论。
随着年级的升高,我们应该结合课堂上的学习内容,引导学生学习一些有效的演绎推理方法。
如,17世纪著名的数学家莱布尼兹就一丝不苟地利用数学的演绎法论证了“2×2=4”,2×2=2×(1+1)=2+2=2+(1+1)=(2+1)+1=3+1=4,这里运用了自然数的意义、乘法分配律、加法结合律等知识进行论证。
小学生的推理能力往往不是靠“传授”得来的,而是在自主参与的推理活动中“领悟”出来的。
数学推理能力的培养并不仅局限于课堂,一些有效的课外活动及游戏方式同样是培养推理能力的良好途径。
(三)把握整体,突破常规,培养直觉思维能力
爱因斯坦说:
“真正可贵的思维是直觉思维。
”直觉思维是人脑对事物、问题、现象的某种直接的领悟和洞察的一种思维形式。
在教学中,要培养学生的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 新课 标的 核心 概念 汇编