汽车理论matlab作业.docx
- 文档编号:11137001
- 上传时间:2023-02-25
- 格式:DOCX
- 页数:49
- 大小:335.02KB
汽车理论matlab作业.docx
《汽车理论matlab作业.docx》由会员分享,可在线阅读,更多相关《汽车理论matlab作业.docx(49页珍藏版)》请在冰豆网上搜索。
汽车理论matlab作业
一、确定一轻型货车的动力性能。
1)绘制汽车驱动力与行驶阻力平衡图;
2)求汽车最高车速与最大爬坡度;
3)绘制汽车行驶加速度倒数曲线;用计算机求汽车用Ⅱ档起步加速行驶至70km/h所需
的加速时间。
已知数据略。
(参见《汽车理论》习题第一章第3题)
解题程序如下:
用Matlab语言
(1)绘制汽车驱动力与行驶阻力平衡图
m1=2000;m2=1800;mz=3880;
g=9.81;r=0.367;CdA=2.77;f=0.013;nT=0.85;
ig=[5.562.7691.6441.000.793];i0=5.83;
If=0.218;Iw1=1.798;Iw2=3.598;
Iw=2*Iw1+4*Iw2;
fori=1:
69
n(i)=(i+11)*50;
Ttq(i)=-19.313+295.27*(n(i)/1000)-165.44*(n(i)/1000)^2+40.874*(n(i)/1000)^3-3.8445*(n(i)/1000)^4;
end
forj=1:
5
fori=1:
69
Ft(i,j)=Ttq(i)*ig(j)*i0*nT/r;
ua(i,j)=0.377*r*n(i)/(ig(j)*i0);
Fz(i,j)=CdA*ua(i,j)^2/21.15+mz*g*f;
end
end
plot(ua,Ft,ua,Ff,ua,Ff+Fw)
title('汽车驱动力与行驶阻力平衡图');
xlabel('ua(km/h)');
ylabel('Ft(N)');
gtext('Ft1')
gtext('Ft2')
gtext('Ft3')
gtext('Ft4')
gtext('Ft5')
gtext('Ff+Fw')
(2)求最大速度和最大爬坡度
fork=1:
175
n1(k)=3300+k*0.1;
Ttq(k)=-19.313+295.27*(n1(k)/1000)-165.44*(n1(k)/1000)^2
+40.874*(n1(k)/1000)^33.8445*(n1(k)/1000)^4;
Ft(k)=Ttq(k)*ig(5)*i0*nT/r;
ua(k)=0.377*r*n1(k)/(ig(5)*i0);
Fz(k)=CdA*ua(k)^2/21.15+mz*g*f;
E(k)=abs((Ft(k)-Fz(k)));
end
fork=1:
175
if(E(k)==min(E))
disp('汽车最高车速=');
disp(ua(k));
disp('km/h');
end
end
forp=1:
150
n2(p)=2000+p*0.5;
Ttq(p)=-19.313+295.27*(n2(p)/1000)-165.44*(n2(p)/1000)^2+40.874*(n2(p)/1000)
^3-3.8445*(n2(p)/1000)^4;
Ft(p)=Ttq(p)*ig
(1)*i0*nT/r;
ua(p)=0.377*r*n2(p)/(ig
(1)*i0);
Fz(p)=CdA*ua(p)^2/21.15+mz*g*f;
af(p)=asin((Ft(p)-Fz(p))/(mz*g));
end
forp=1:
150
if(af(p)==max(af))
i=tan(af(p));
disp('汽车最大爬坡度=');
disp(i);
end
end
汽车最高车速=99.0679km/h
汽车最大爬坡度=0.3518
(3)计算2档起步加速到70km/h所需时间
fori=1:
69
n(i)=(i+11)*50;
Ttq(i)=-19.313+295.27*(n(i)/1000)-165.44*(n(i)/1000)^2+40.874*(n(i)/1000)^3-3.8445*(n(i)/1000)^4;
end
forj=1:
5
fori=1:
69
deta=1+Iw/(mz*r^2)+If*ig(j)^2*i0^2*nT/(mz*r^2);
ua(i,j)=0.377*r*n(i)/(ig(j)*i0);
a(i,j)=(Ttq(i)*ig(j)*i0*nT/r-CdA*ua(i,j)^2/21.15
-mz*g*f)/(deta*mz);
if(a(i,j)<=0)
a(i,j)=a(i-1,j);
end
if(a(i,j)>0.05)
b1(i,j)=a(i,j);
u1(i,j)=ua(i,j);
else
b1(i,j)=a(i-1,j);
u1(i,j)=ua(i-1,j);
end
b(i,j)=1/b1(i,j);
end
end
x1=u1(:
1);y1=b(:
1);
x2=u1(:
2);y2=b(:
2);
x3=u1(:
3);y3=b(:
3);
x4=u1(:
4);y4=b(:
4);
x5=u1(:
5);y5=b(:
5);
plot(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5);
title('加速度倒数时间曲线');
axis([0120030]);
xlabel('ua(km/h)');
ylabel('1/aj');
gtext('1/a1')
gtext('1/a2')
gtext('1/a3')
gtext('1/a4')
gtext('1/a5')
fori=1:
69
A=ua(i,3)-ua(69,2);
if(A<1&A>0)
j=i;
end
B=ua(i,4)-ua(69,3);
if(B<2&B>0)
k=i;
end
if(ua(i,4)<=70)
m=i;
end
end
t=ua(1,2)*b(1,2);
forp1=2:
69
t1(p1)=(ua(p1,2)-ua(p1-1,2))*(b(p1,2)+b(p1-1,2))*0.5;
t=t+t1(p1);
end
forp2=j:
69
t2(p2)=(ua(p2,3)-ua(p2-1,3))*(b(p2,3)+b(p2-1,3))*0.5;
t=t+t2(p2);
end
forp3=k:
m
t3(p3)=(ua(p3,4)-ua(p3-1,4))*(b(p3,4)+b(p3-1,4))*0.5;
t=t+t3(p3);
end
t=t+(ua(j,3)-ua(69,2))*b(69,2)+(ua(k,4)-ua(69,3))*b(69,3)
+(70-ua(m,4))*b(m,4);
tz=t/3.6;
disp('加速时间=');
disp(tz);
disp('s');
加速时间=29.0585s
二、计算与绘制题1中货车的1)汽车功率平衡图;
2)最高档与次高档的等速百公里油耗曲线。
已知数据略。
(参见《汽车理论》习题第二章第7题)
解题程序如下:
用Matlab语言
m1=2000;m2=1800;mz=3880;g=9.81;
r=0.367;CdA=2.77;f=0.013;nT=0.85;
ig=[5.562.7691.6441.000.793];
i0=5.83;If=0.218;Iw1=1.798;Iw2=3.598;
n1=[8151207161420122603300634033804];
Iw=2*Iw1+4*Iw2;
nd=400;Qid=0.299;
forj=1:
5
fori=1:
69
n(i)=(i+11)*50;
Ttq(i)=-19.313+295.27*(n(i)/1000)-165.44*(n(i)/1000)^2+40.874*(n(i)/1000)^3-3.8445*(n(i)/1000)^4;
Pe(i)=n(i)*Ttq(i)/9549;
ua(i,j)=0.377*r*n(i)/(ig(j)*i0);
Pz(i,j)=(mz*g*f*ua(i,j)/3600.+CdA*ua(i,j)^3/76140.)/nT;
end
end
plot(ua,Pe,ua,Pz);
title('汽车功率平衡图)');
xlabel('ua(km/h)');
ylabel('Pe,Pz(kw)');
gtext('I')
gtext('II')
gtext('III')
gtext('IV')
gtext('V')
gtext('P阻')
forj=1:
5
fori=1:
8
Td(i)=-19.313+295.27*(n1(i)/1000.0)-165.44*(n1(i)/1000.0)^2+40.874*(n1(i)/10
00.0)^3-3.8445*(n1(i)/1000.0)^4;
Pd(i)=n1(i)*Td(i)/9549;
u(i,j)=0.377*n1(i)*r/(ig(j)*i0);
end
end
b
(1)=0.17768*Pd
(1)^4-5.8629*Pd
(1)^3+72.379*Pd
(1)^2-416.46*Pd
(1)+1326.8;
b
(2)=0.043072*Pd
(2)^4-2.0553*Pd
(2)^3+36.657*Pd
(2)^2-303.98*Pd
(2)+1354.7;
b(3)=0.0068164*Pd(3)^4-0.51184*Pd(3)^3+14.524*Pd(3)^2-189.75*Pd(3)+1284.4;
b(4)=0.0018555*Pd(4)^4-0.18517*Pd(4)^3+7.0035*Pd(4)^2-121.59*Pd(4)+1122.9;
b(5)=0.00068906*Pd(5)^4-0.091077*Pd(5)^3+4.4763*Pd(5)^2-98.893*Pd(5)+1141.0;
b(6)=0.00035032*Pd(6)^4-0.05138*Pd(6)^3+2.8593*Pd(6)^2-73.714*Pd(6)+1051.2;
b(7)=0.00028230*Pd(7)^4-0.047449*Pd(7)^3+2.9788*Pd(7)^2-84.478*Pd(7)+1233.9;
b(8)=-0.000038568*Pd(8)^40.00075215*Pd(8)^3+0.71113*Pd(8)^245.291*Pd(8)
+1129.7;
u1=u(:
1)';
u2=u(:
2)';
u3=u(:
3)';
u4=u(:
4)';
u5=u(:
5)';
B1=polyfit(u1,b,3);
B2=polyfit(u2,b,3);
B3=polyfit(u3,b,3);
B4=polyfit(u4,b,3);
B5=polyfit(u5,b,3);
forq=1:
69
bh(q,1)=polyval(B1,ua(q,1));
bh(q,2)=polyval(B2,ua(q,2));
bh(q,3)=polyval(B3,ua(q,3));
bh(q,4)=polyval(B4,ua(q,4));
bh(q,5)=polyval(B5,ua(q,5));
end
fori=1:
5
forq=1:
69
Q(q,i)=Pz(q,i)*bh(q,i)/(1.02*ua(q,i)*7.05);
end
end
plot(ua(:
4),Q(:
4),ua(:
5),Q(:
5));
title('四档五档等速百公里油耗图');
xlabel('ua(km/h)');
ylabel('Qs(L/100km)');
三、改变1.3题中轻型货车的主减速器传动比,做出
为5.17、5.43、5.83、6.17、6.33时的燃油经济性—加速时间曲线,讨论不同
值对汽车性能的影响。
Matlab程序:
m1=2000;
m2=1800;
m=3880;
r0=0.367;
gt=0.85;
f=0.013;
CDA=2.77;
i0=5.83;
If=0.218;
Iw1=1.798;
Iw2=3.598;
Ig5=[5.562.7691.6441.000.793];
Ig0=[5.175.435.836.176.33];
B=[1326.8-416.4672.379-5.86290.17768;
1354.7-303.9836.657-2.05530.043072;
1284.4-189.7514.524-0.511840.0068164;
1122.9-121.597.0035-0.185170.0018555;
1141.0-98.8934.4763-0.0910770.00068906;
1051.2-73.7142.8593-0.051380.00035032;
1233.9-84.4782.9788-0.0474490.00028230;
1129.7-45.2910.71113-0.00075215-0.000038568;];
n=[8151207161420122603300634033804];
fori=1:
5
fork=1:
8
ua(i,k)=0.377*0.367*n(k)/(Ig0(i)*Ig5(5));
Ttq(i)=-19.313+295.27.*(n(i)/1000)-165.44.*(n(i)/1000).^2+40.874.*(n(i)/1000).^3-3.8445.*(n(i)/1000).^4;
F5(i,k)=0.013*3880*9.8+2.77.*ua(i,k)^2/21.15;
Pe(i,k)=F5(i,k)*ua(i,k)/(3600*0.85);
b5(i,k)=B(k,1)+B(k,2)*Pe(i,k)+B(k,3)*Pe(i,k)^2+B(k,4)*Pe(i,k)^3+B(k,5)*Pe(i,k)^4;
end
end
ua1=25;s1=50;
Fa5=0.013*3880*9.8+2.77.*ua1.^2/21.15;
Pe5=Fa5.*ua1/(3600*0.85);
d1=polyfit(Pe(1,:
),b5(1,:
),3);
ba1=polyval(d1,Pe5);
d2=polyfit(Pe(2,:
),b5(2,:
),3);
ba2=polyval(d2,Pe5);
d3=polyfit(Pe(3,:
),b5(3,:
),3);
ba3=polyval(d3,Pe5);
d4=polyfit(Pe(4,:
),b5(4,:
),3);
ba4=polyval(d4,Pe5);
d5=polyfit(Pe(5,:
),b5(5,:
),3);
ba5=polyval(d5,Pe5);
ba=[ba1ba2ba3ba4ba5];
Qa1=Pe5.*ba*50/(ua1*102*7)
ua2=25:
40;
Q2=1+(2*Iw1+4*Iw2)/(m*r0^2)+If*Ig5
(2).^2*Ig0
(2)^2*gt/(m*r0^2)
Fb5=0.013*3880*9.8+2.77.*ua2.^2/21.15+Q2*m*0.25;
Pb5=Fb5.*ua2/(3600*0.85);
db1=polyfit(Pe(1,:
),b5(1,:
),3);
bb1=polyval(db1,Pb5);
db2=polyfit(Pe(2,:
),b5(2,:
),3);
bb2=polyval(db2,Pb5);
db3=polyfit(Pe(3,:
),b5(3,:
),3);
bb3=polyval(db3,Pb5);
db4=polyfit(Pe(4,:
),b5(4,:
),3);
bb4=polyval(db4,Pb5);
db5=polyfit(Pe(5,:
),b5(5,:
),3);
bb5=polyval(db5,Pb5);
bb=[bb1
bb2
bb3
bb4
bb5];
Pb=[Pb5
Pb5
Pb5
Pb5
Pb5];
Qb=Pb.*bb/(367.1*7);
fori=1:
5
forj=1:
15
qb(i,j)=Qb(i,j)+Qb(i,j+1);
end
end
Qb2=sum(qb')
ua3=40;s2=250;
Fc5=0.013*3880*9.8+2.77.*ua3.^2/21.15;
Pc5=Fc5.*ua3/(3600*0.85);
dc1=polyfit(Pe(1,:
),b5(1,:
),3);
bc1=polyval(dc1,Pc5);
dc2=polyfit(Pe(2,:
),b5(2,:
),3);
bc2=polyval(dc2,Pc5);
dc3=polyfit(Pe(3,:
),b5(3,:
),3);
bc3=polyval(dc3,Pc5);
dc4=polyfit(Pe(4,:
),b5(4,:
),3);
bc4=polyval(dc4,Pc5);
dc5=polyfit(Pe(5,:
),b5(5,:
),3);
bc5=polyval(dc5,Pc5);
bc=[bc1bc2bc3bc4bc5];
Qc3=Pc5.*bc*250/(ua3*102*7)
ua4=40:
50;
Q4=1+(2*Iw1+4*Iw2)/(m*r0^2)+If*Ig5(4).^2*Ig0(4)^2*gt/(m*r0^2)
Fd5=0.013*3880*9.8+2.77.*ua4.^2/21.15+Q4*m*0.2;
Pd5=Fd5.*ua4/(3600*0.85);
dd1=polyfit(Pe(1,:
),b5(1,:
),3);
bd1=polyval(dd1,Pd5);
dd2=polyfit(Pe(2,:
),b5(2,:
),3);
bd2=polyval(dd2,Pd5);
dd3=polyfit(Pe(3,:
),b5(3,:
),3);
bd3=polyval(dd3,Pd5);
dd4=polyfit(Pe(4,:
),b5(4,:
),3);
bd4=polyval(dd4,Pd5);
dd5=polyfit(Pe(5,:
),b5(5,:
),3);
bd5=polyval(dd5,Pd5);
bd=[bd1
bd2
bd3
bd4
bd5];
Pd=[Pd5
Pd5
Pd5
Pd5
Pd5];
Qd=Pd.*bd/(367.1*7);
fori=1:
5
forj=1:
10
qd(i,j)=Qd(i,j)+Qd(i,j+1);
end
end
Qd4=sum(qd')
ua5=50;s2=250;
Ff5=0.013*3880*9.8+2.77.*ua5.^2/21.15;
Pf5=Ff5.*ua5/(3600*0.85);
df1=polyfit(Pe(1,:
),b5(1,:
),3);
bf1=polyval(df1,Pf5);
df2=polyfit(Pe(2,:
),b5(2,:
),3);
bf2=polyval(df2,Pf5);
df3=polyfit(Pe(3,:
),b5(3,:
),3);
bf3=polyval(df3,Pf5);
df4=polyfit(Pe(4,:
),b5(4,:
),3);
bf4=polyval(df4,Pf5);
df5=polyfit(Pe(5,:
),b5(5,:
),3);
bf5=polyval(df5,Pf5);
bf=[bf1bf2bf3bf4bf5];
Qf5=Pf5.*bf*250/(ua3*102*7)
Qi=0.299;
Qg=(50-25)/3.6/0.36*0.299;
Qg6=[QgQgQgQgQg]
Q=[Qa1
Qb2
Qc3
Qd4
Qf5
Qg6];
Qz=sum(Q)/1075*100
fork=1:
5
fori=1:
3401;
forj=1:
5;
n(i)=i+599;
ua(i,j)=0.377*r0*n(i)./(Ig5(j)*Ig0(k));
Q(j)=1+(2*Iw1+4*Iw2)/(m*r0^2)+If*Ig5(j).^2*Ig0(k)^2*gt/(m*(r0)^2);
end
end
uamax=max(ua);
uamin=min(ua);
ua2=uamin
(2):
uamax
(2);
n=ua2*Ig0(k)*Ig5
(2)/(0.377*0.367);
Ttq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4;
Ft2=Ttq*Ig0(k)*Ig5
(2)*0.85/0.367;
F2=0.013*3880*9.8+2.77*ua2.^2/21.15;
a2=(Ft2-F2)./(Q
(2)*m);
t2=trapz(ua2,1./a2)/3.6;
ua3=uamax
(2):
uamax(3);
n3=ua3*Ig0(k)*Ig5(3)/(0.377*0.367);
Ttq3=-19.313+295.27*(n3/1000)-165.44*(n3/1000).^2+40.874*(n3/1000).^3-3.8445*(n3/1000).^4;
Ft3=Ttq3*Ig0(k)*Ig5(3)*0.85/0.367;
F3=0.013*3880*9.8+2.77*ua3.^2/21.15;
a3=(Ft3-F3)./(Q(3)*m);
t3=trapz(ua3,1./a3)/3.6;
ua4=uamax(3):
70;
n4=ua4*Ig0(k)*Ig5(4)/(0.377*0.367);
Ttq4=-19.313+295.27*(n4/1000)-165.44*(n4/1000).^2+40.874*(n4/1000).^3-3.8445*(n4/1000).^4;
Ft4=Ttq4*Ig0(k)*Ig5(4)*0.85/0.367;
F4=0.013*3880*9.8+2.77*ua4.^
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汽车 理论 matlab 作业