北师大版五年级上册数学教案.docx
- 文档编号:11079073
- 上传时间:2023-02-24
- 格式:DOCX
- 页数:55
- 大小:43.60KB
北师大版五年级上册数学教案.docx
《北师大版五年级上册数学教案.docx》由会员分享,可在线阅读,更多相关《北师大版五年级上册数学教案.docx(55页珍藏版)》请在冰豆网上搜索。
北师大版五年级上册数学教案
第一单元倍数与因数
一、单元教学目标
1、使学生经历探索数的有关特征的活动,认识自然数,认识倍数与因数,能找出10以内某个自然数在100以内的全部倍数,能找出100以内某个自然数的所有因数。
知道什么是质数、合数,使学生经历2、5、3的倍数的特征的探索过程,知道的其特征,知道奇数和偶数。
2、使学生经历将一些实际问题抽象为数与代数问题的过程,发展学生的抽象思维。
在探索过程中,发展实践能力与创新精神。
3、在探索活动中,体会观察、分析、归纳、猜想、验证等过程,体验数学问题的探索性和挑战性。
二、单元教学重点
因数与倍数;2,5,3的倍数的特征;奇数与偶数;质数与合数。
三、单元教学难点
在探索过程中,能根据解决问题的需要,收集有关信息,进行分析、归纳、发现数的特征。
四、单元课时划分
9课时
第1课时
[教学内容]数的世界(第2-3页)
[教学目标]
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
[教学重、难点]探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
[教学过程]
一、数的世界
创设“水果店”的情境,呈现了生活中的数有自然数、负数、小数。
在比较中认识自然数、整数,使对数的认识进一步系统化。
先让学生观察情境图,说说图中有哪些数,并给它们分类。
二、因数与倍数
1、在解决书上提出的问题的过程中引出算式。
5×4=20(元)
以这个乘法算式为例说明倍数和因数的含义,即20是4的倍数,20也是5的倍数,4是20的因数,5也是20的因数。
引导学生认识倍数与因数,体会倍数与因数的含义。
在利用乘法算式说明倍数和因数的含义的基础上,出示一个除法算式,如:
18÷6=3启发学生思考:
根据整数除法算式能不能确定两个数之间的倍数关系。
说明:
在研究倍数和因数,范围限制为不是零的自然数。
2、你写我说
让学生同桌间互相写算式,再说一说。
算式可以是乘法算式,也可以是除法算式。
三、找一找
1、判断题目中给的数是不是7的倍数
先让学生用自己的方法判断,再组织学生交流,使学生逐步体会可以通过想乘法算式或除法算式的方法来判断。
2、找7的倍数:
引导学生体会一般可以用想乘法算式的方法来找一个数的倍数,要注意引导学生有序思考,并逐步让学生领会一个数的倍数的个数是无限的。
四、练一练:
第2题:
先让学生自己找一找4的倍数和6的倍数,并用不同的符号做好记号。
然后组织学生交流,并让学生说说找倍数的方法。
最后,说说哪几个数既是4的倍数有是6的倍数。
第3题:
先让学生独立写一写,再组织学生交流各自的方法,并在交流比较的过程中体会怎样做到不重复、不遗漏。
体会到像这样找一个数的倍数,一般用乘法想比较方便。
[板书设计]
倍数与因数
像0、1、2、3、4、5、…这样的数是自然数。
像-3、-2、-1、0、1、2、…这样的数是整数。
5×4=20(元)20是4和5的倍数
4和5是20的因数
第2课时
[教学内容]2、5的倍数特征(第4-5页)
[教学目标]
1、经历探索2、5倍数的特征的过程,理解2、5倍数的特征,能判断一个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或是偶数。
3、在观察、猜测和讨论过程中,提高探究问题的能力。
[教学重、难点]在观察、猜测和讨论过程中,提高探究问题的能力。
[教学过程]
一、5的倍数的特征的探究
让学生在100以内的数表中找出5的倍数,用自己的方式做记号,并观察、思考5的倍数有什么特征。
在此基础上组织学生交流。
引导学生归纳5的倍数的特征:
个位上是0或5的数是5的倍数。
试一试:
尝试用5的倍数特征来判断一个数是不是5的倍数。
二、2的倍数的特征的探究
让学生在100以内的数表中找出2的倍数,用自己的方式做记号,并观察、思考2的倍数有什么特征。
在此基础上组织学生交流。
引导学生归纳2的倍数的特征:
个位上是0、2、4、6、8的数是2的倍数。
三、奇数、偶数
在学生理解2的倍数的特征后再揭示偶数、奇数的含义,并进行你问我答的判断练习。
四、练一练:
第2题:
引导学生先独立思考,然后组织学生交流自己的思考方法。
在引导学生判断时,应根据2、5的倍数特征说明理由。
如“因为85不是2的倍数,所以不能正好装完”;又如:
“因为85是5的倍数,所以能正好装完。
”
五、数学游戏:
这是围绕“2、5的倍数的特征”设计的数学游戏,通过游戏加深学生对2、5的倍数的特征的理解。
[板书设计]
2、5的倍数的特征
5的倍数的特征:
个位上是0或5的数是5的倍数。
2的倍数的特征:
个位上是0、2、4、6、8的数是2的倍数。
是2的倍数的数叫偶数。
不是2的倍数的数叫奇数。
第3课时
[教学内容]3的倍数特征(第6-7页)
[教学目标]
1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。
2、发展分析、比较、猜测、验证的能力。
[教学重、难点]发展分析、比较、猜测、验证的能力。
[教学过程]
一、3的倍数的特征的猜想
我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?
引导学生提出猜想。
学生可能会猜想:
个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。
二、3的倍数的特征的探究
让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。
在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。
引导学生归纳3的倍数的特征:
每个数位的各个数字加起来是3的倍数。
试一试:
尝试用3的倍数特征来判断一个数是不是3的倍数。
三、练一练:
第2题:
让学生准备几张卡片:
3、0、4、5边摆边想,再交流讨论思考的过程。
(1)30、45、54
(2)30、54(3)30、45(4)30
四、实践活动:
让学生运用研究3的倍数的特征的方法去研究9的倍数。
让学生经历涂、画、想等过程,使学生获得真实的体验。
[板书设计]
3的倍数的特征
3的倍数的特征:
这个数各位数字之和是3的倍数。
第4课时
[教学内容]找因数(第8-9页)
[教学目标]
1、用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。
2、在1-100的自然数中,能找到某个自然数的所有因数。
[教学重、难点]用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。
[教学准备]学生、老师小正方形若干个。
[教学过程]
六、动手拼长方形
用12个小正方形拼成长方形有几种拼法。
让学生自己先尝试着拼一拼,再交流不同的拼法。
学生一般会用乘法思路思考:
哪两个数相乘等于12?
然后找出:
1×12、2×6、3×4。
这种思路就是找一个数的因数的基本方法,要引导学生关注有序思考,并体会一个数的因数个数是有限的。
七、试一试
找因数的基本练习:
找9和15的因数。
让学生独立完成,注意引导学生有序思考。
八、练一练:
第2题:
先让学生自己找一找18的因数和21的因数,并用不同的符号做好记号,然后让学生说说找因数的方法。
最后,说说哪几个数既是18的因数,又是21的因数。
第3题:
利用数形结合,进一步体会找因数的方法。
第5题:
可以引导学生用找因数的方法进行思考,鼓励学生将想到的排列方法列出来,在交流的基础上,使学生经历有条理的思考过程。
48=1×48=2×24=3×16=4×12=6×8,48有10个因数,就有10种排法。
如每行12人,排4行;每行4人,排12行等。
37只有两个因数,只有两种排法。
[板书设计]
找因数
面积是12的长方形有:
6种图形1×12=12
2×6=12
3×4=12
第5课时
[教学内容]找质数(第10-11页)
[教学目标]
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数和合数。
3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。
[教学重、难点]
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数和合数。
[教学准备]学生、老师小正方形若干个。
[教学过程]
一、动手拼长方形,揭示质数、合数的意义
1、用小正方形拼成长方形有几种拼法。
让学生自己先尝试着拼一拼,边拼边填写书上的表格。
2、引导学生观察并提出问题:
“这些小正方形有的只能拼成一种长方形,有的能拼成两种或两种以上的长方形,为什么?
”
3、揭示质数、合数的意义
组织学生观察、比较、分析逐步发现特征,并把几个自然数分类,揭示质数和合数的意义。
从概念出发理解“1既不是质数,也不是合数。
”
二、讨论判断质数、合数的方法。
1、尝试判断:
2、8、9、13、51、37、91、52是质数还是合数
先让学生独立判断,再组织交流“怎样判断一个数是质数还是合数”
2、归纳方法:
只要找到一个1和本身以外的因数,这个数就是合数。
如果除了1和它本身找不到其他的因数,这个数就是质数。
三、探索活动:
第1题:
用“筛法”找100以内的质数。
引导学生有步骤、有目的地操作、观察和交流,找出100以内的质数。
介绍这种方法是两千多年前希腊数学家提出的研究质数的方法,称为“筛法”。
现在随着计算机的发展,这种操作方法可以编成程序让计算机进行操作。
这样,可以使学生了解数学发展的历史,感受到数学文化的魅力,丰富学生对数学发展的认识,激起学生探究知识的欲望和兴趣。
第2题:
本题引导学生通过操作、观察,探索规律。
第
(1)、
(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?
引导观察:
因为2,4,6列除2外,其他数都是2的倍数,这些数除1和本身外还有2这个因数,所以不是质数。
第3列的数除1和本身外还有3这个因数,所以不是质数。
第(3)题理由:
用6除一个大于6的自然数,如果余数是0、2、4,这个数肯定是2的倍数;如果余数是3,这个数肯定是3的倍数。
[板书设计]
找质数
一个数除了1和它本身以外还有别的因数,这个数就叫合数。
一个数只有1和它本身两个因数,这个数叫做质数。
1既不是质数,也不是合数。
第6课时
[教学内容]练习一(第12-13页)
[教学目标]
1、复习找倍数和因数的方法。
2、能正确判断质数和合数、奇数和偶数。
3、应用所学知识解决实际问题。
[教学重、难点]
1、复习找倍数和因数的方法。
2、能正确判断质数和合数。
3、应用所学知识解决实际问题。
[教学过程]
第1题:
先让学生找15的因数和倍数,交流找因数和倍数的方法。
在此基础上,还可以引导学生观察15的最大因数是几,15最小的倍数是几。
第2题:
可以让学生先列出9的倍数(54以内):
9、18、27、36、45、54。
再列出54的所有因数:
1、2、3、6、9、18、27、54。
然后再回答问题。
有4种可能:
9、18、27、54。
第3题:
要引导学生交流一下判断的方法。
如果学生有困难,可以分层次进行,先判断奇数和偶数,再填质数和合数。
第4题:
本题是对本单元所学概念的理解巩固与综合运用。
第1项结论是5,第2项结论是13和2,第3项结论是36或92。
在完成本题的基础上,教师还可以引导学生运用本单元的知识自己编一些这样的题,促进学生对概念的理解。
第5题:
先让学生解决第1个问题,并交流是如何思考的,一般可以从每盒瓶数是不是90的因数考虑,也可以用除法来解决,6、5、3都是90的因数,能正好装完。
8不是90的因数,不能正好装完。
第2问是引导学生思考90还有哪些因数,同时还要联系生活实际,如每盒2瓶、9瓶、10瓶等都较合理,每盒90瓶就不太合理。
第6题:
本为思考题,主要是引导学生探索、研究“3个连续的自然数组成的数一定是3的倍数”的规律。
第7课时
[教学内容]数的奇偶性(第14-15页)
[教学目标]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学重、难点]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学过程]
活动1:
利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:
翻动10次,杯口朝上;翻动19次,杯口朝下。
解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:
探索奇数、偶数相加的规律
先研究“偶数+偶数”的规律,在经历“列式计算—初步得出结论—举例验证—得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。
还可以引导学生研究减法中奇偶性的变化规律。
[板书设计]数的奇偶性
例子:
结论:
12+34=48偶数+偶数=偶数
11+37=48奇数+奇数=偶数
12+11=23奇数+偶数=奇数
第8课时
教学内容:
比较图形的面积
教学目标:
借助方格纸,能直接判断图形面积的大小。
通过交流,知道比较图形面积大小的基本方法。
体验图形形状的变化与面积大小变化的关系。
教学重点:
面积大小比较的方法。
教学难点:
图形的等积变换。
教学过程:
一、新课教学
比较图形面积大小的方法
让学生观察方格中各种形状的平面图:
提问:
下面各图形的面积有什么关系?
你是怎样知道的?
同学进行交流。
二、归纳比较的方法:
(1)平移
(2)分割(3)数方格
你还有什么发现?
与同学进行交流
三、练习
用分割和平移法来判断
根据自已的理解画图形,只要面积是否120平方厘米都可以。
让学生讨论观察补哪块图形好。
四、作业
课堂作业
课外作业:
17页第4、5题。
第9课时
教学内容:
地毯上的图形面积
教学目标:
能直接在方格图上,数出相关图形的面积。
能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
在解决问题的过程中,体会策略、方法的多样性。
教学过程:
一、出示图形,让学生观察讨论:
地毯上的图形面积是多少?
图形有什么特点?
求地毯上蓝色部分的面积有哪些方法?
小组讨论
求积的方法:
(1)数格
(2)大面积减小面积(3)分割数格
二、练一练
求下列图形的面积:
你是用什么方法知道每个图形的面积?
(讨论)
下列点图上的面积是多少?
请学生说如何分割?
为什么怎样分割?
总结:
求这类图形的面积有哪些方法?
应注意什么?
三、作业
第10课时
教学内容:
平行四边形面积的计算
教学要求:
1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2.通过操作,进一步发展学生思维能力。
培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3.引导学生运用转化的思想探索规律。
教学重点:
理解并掌握平行四边形面积的计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程。
教学过程:
一、激发
1.提问:
怎样计算长方形面积?
板书:
长方形面积=长×宽
2.口算出下面各长方形的面积。
(1)长1.2厘米,宽3厘米。
(2)长0.5米,宽0.4米。
3.出示方格纸上画的平行四边形,提问:
这是什么图形?
什么叫平行四边形?
指出它的底和高。
4.揭题:
我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?
这节课我们就学习“平行四边形面积的计算(板书课题:
平行四边形面积的计算)
二、尝试
1.用数方格的方法计算平行四边形面积。
(1)请大家打开书自学
(2)指名到投影上数。
边数边讲解:
我先数……,它是……平方厘米;再数……,它是……平方厘米;两部分合起来是……平方厘米。
(3)投影出示长方形。
提问:
数一数,这个长方形的长是多少?
宽是多少?
怎样计算它的面积。
(4)观察比较两个图形的关系,提问:
你发现了什么?
引导学生明确:
平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?
学生自己剪、拼。
②互相讨论。
提问:
你发现了什么规律?
通过操作讨论得出:
只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形——长方形。
这种剪法最简便。
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?
(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。
(出示剪刀,闪动被剪掉的部分)。
②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。
这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3.归纳总结公式
(1)比较变化前的两个图形,提问:
你发现了什么?
互相讨论,汇报讨论结果。
根据讨论结果完成填空。
引导学生明确:
你发现了什么?
互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。
即长方形面积等于平行四边形面积。
(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。
(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?
强化理解推导过程。
板书:
平行四边形的面积=底×高
4.教学字母公式
(1)介绍每个字母所表示的意义及读法。
板书S=a×h
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作“•”,也可以省略不写。
所以平行四边形面积的计算公式可以写成“S=a•h或“S=ah”。
(同时板书)
(3)提问:
计算平行四边形面积,需要知道哪些条件?
三、应用
1.一块平行四边形钢板(如下图),它的面积是多少?
(得数保留整数)
3.5厘米
4.8厘米
①读题,理解题意。
②学生试做,指名板演。
提醒学生注意得数保留整数。
③订正。
提问:
根据什么这样列式?
订正时提问:
计算时注意哪些问题?
3.填空
任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的面积()。
这个长方形的长与原平行四边形的()相等。
这个长方形的()与原平行四边形的()相等。
因为长方形的面积等于(),所以平行四边形的面积等于()。
4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
5.你能求出下列图形的面积吗?
如果能,请计算出面积。
(单位:
厘米)
162015
20
四、体验
今天,你学会了什么?
怎样求平行四边形的面积?
平行四边形的面积计算公式是怎样推导的?
五、作业
。
第11课时
教学内容:
平行四边形面积计算的练习(P.74~75页练习十七第4~9题。
)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1.口算。
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
2.平行四边形的面积是什么?
它是怎样推导出来的?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:
一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:
“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:
250×780÷10000=1.95公顷,
再求共收小麦多少千克:
7000×1.95=13650千克
⑶如果问题改为:
“一共可收小麦58500千克,平均每公顷可收小麦多少千克?
”又该怎样想?
与⑵比较,从数量关系上看,什么相同?
什么不同?
讨论归纳后,生自己列式解答:
58500÷(250×78÷1000)
⑷小结:
上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习:
下土重量各平行四边形的面积相等吗?
为什么?
每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?
为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?
(等底等高的平行四边形的面积相等。
)
3.已知一个平行四边形的面积和底,(如图),求高。
28平方米
7米
分析与解:
因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
四、作业
第12课时
教学内容:
三角形面积的计算
教学要求:
1.使学生理解并掌握三角形面积的计算公式。
能正确地计算三角形的面积。
2.通过操作,培养学生的分析推理能力。
培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。
3.引导学生运用转化的方法探索规律。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学过程:
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?
计算平行四边形的面积我们学过哪些方法?
(板书:
平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。
三角形按角可以分为哪几种?
3.既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?
(揭示课题:
三角形面积的计算)
二、尝试
1.用数方格的方法求三角形的面积。
(1)看书
(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。
我们分别验证一下。
2.用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?
学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:
通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 上册 数学教案