最新专业课考试大纲汇总.docx
- 文档编号:10940895
- 上传时间:2023-02-23
- 格式:DOCX
- 页数:15
- 大小:23.93KB
最新专业课考试大纲汇总.docx
《最新专业课考试大纲汇总.docx》由会员分享,可在线阅读,更多相关《最新专业课考试大纲汇总.docx(15页珍藏版)》请在冰豆网上搜索。
最新专业课考试大纲汇总
2010专业课考试大纲
2010年河北专接本数学(数一)考试大纲
学习2011-02-2015:
36:
11阅读20评论0 字号:
大中小 订阅
1考试说明
一、内容概述与总要求
参加数一考试的考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程以及《线性代数》中行列式、矩阵、线性方程组的基本概念与基本理论,掌握或学会上述各部分的基本方法;注意各部分知识结构及知识的内在联系;应具有一定的运算能力、逻辑推理能力、空间想象能力和抽象思维能力;能运用基本概念、基本理论和基本方法准确、简捷地计算,正确地推理证明;能运用所学知识分析并解决简单的实际问题。
数学考试从两个层次上对考生进行测试,较高层次的要求为“理解”和“掌握”,较低层级的要求为“了解”和“会”。
这里“理解”和“了解”两词分别是对概念、理论的高层次与低层次要求。
“掌握”和“会”两词分别是对方法、运算的高层次与次层次要求。
二、考试形式与试卷结构
考试采用闭卷、笔试形式,全卷满分为100分,考试时间为60分钟。
试卷包括选择题、填空题、计算题和证明题。
选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;计算题、证明题均应写出文字说明、演算步骤或推证过程。
选择题和填空题分值合计为50分。
计算题和证明题分值合计50分。
数一中《高等数学》与《线性代数》的分值比例约为84:
16
2考试内容和要求
一、函数、极限与连续
(一)函数
1.知识范围
函数的概念及表示方法分段函数函数的奇偶性、单调性、有界性和周期性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题函数关系的建立
2.考试要求
(1)理解函数的概念,会求函数的定义域、表达式及函数值,会建立实际问题中的函数关系式。
(2)了解函数的简单性质,会判断函数的有界性、奇偶性、单调性、周期性。
(3)掌握基本初等函数的性质及其图形。
(4)理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
掌握将一个复合函数分解为基本初等函数或者简单函数的复合的方法。
(二)极限
1.知识范围
数列极限与函数极限的定义及其性质,函数的左、右极限,极限的四则运算,无穷小无穷大无穷小的变化
两个重要极限;
2.考核要求
(1)理解极限的概念(对极限定义中“ε—N”、“ε—δ”、“ε—M”等形式的描述不作要求),理解函数左、右极限的概念以及极限存在与左、右极限之间的关系,了解自变量趋向于无穷大时函数极限存在的充分必要条件。
(2)了解极限的性质,掌握极限的四则运算法则。
(3)理解无穷小、无穷大以及无穷小的比较(高阶、低阶、同阶和等阶)的概念,会应用无穷小与无穷大的关系、有界变量与无穷小的乘积、等价无穷小代换求极限。
(4)掌握应用两个重要极限求极限的方法。
(三)函数的连续性
1.知识范围
函数连续的概念函数的间断点初等函数的连续性闭区间上连续函数的性质(最大值与最小值定理、零点存在定理)
2.考核要求
(1)理解函数连续性概念会判断分段函数在分段点的连续性。
(2)会求函数的间断点
(3)了解闭区间上连续函数的性质(最大值与最小值定理、零点存在定理),会用零点存在定理推正一些简单的命题。
(4)了解连续函数的性质和初等函数的连续性,理解函数在一点连续和极限存在的关系,会应用函数的连续性求极限。
二、一元函数微分学
(一)导数与微分
1.知识范围
导数与微分的概念导数的几何意义与物理意义函数的可导性与连续性的关系平面、曲线的切线和法线基本初等函数的导数导数与微分的四则运算复合函数、隐函数以及参加方程确定的函数的微分法高阶导数的概念某些简单函数的n阶导数微分运算法则一阶微分形式的不变性
2.考试要求
(1)理解导数与微分的概念,理解导数的几何意义,了解函数的可导性与连续性之间的关系,会求分段函数在分段点处的导数。
(2)会求平面曲线的切线方程与法线方程。
(3)掌握基本初等函数的导数公式,掌握导数的四则运算法则及复合函数的求导法则。
(4)会求隐函数和由参数方程所确定的一阶、二阶导数,会使用对数求导法。
(5)了解高阶导数的概念,会求某些简单函数的n阶导数。
(6)掌握微分运算法则及一阶微分形式不变性,了解可微分与可导的关系,会求函数的微分。
(二)微分中值定理和导数的应用
1.知识范围
罗尔Rolle中值定理拉格朗日Lagrange中值定理落必达L`Hospital法则函数单调性的判定函数极值及其求法函数最大值、最小值的求法及简单应用函数图形的凹凸性与拐点及其求法函数图形的水平渐进线和铅直渐进线
2.考核要求
(1)理解罗尔中值定理、拉格朗日中值定理及其几何意义,会用罗尔定理、拉格朗日中值定理证明某些简单的不等式和证明某些方程根存在性。
(2)掌握用落必达法则求未定式极限的方法。
(3)掌握利用导数判定函数单调性及求函数的单调区间的方法,会利用函数的单调性证明简单的不等式。
(4)理解函数极值的概念,掌握求函数极值的方法,掌握函数最大值、最小值的求法及其简单应用。
(5)会判断函数的凹凸性,会求函数图形的拐点。
(6)会判断函数图形的水平渐进线和铅直渐进线。
(7)会描绘简单函数的图形。
三、一元函数积分学
(一)不定积分
1.知识范围
原函数与不定积分的概念不定积分的基本性质基本积分公式第一换元法(即凑微分法)第二换元法分部积分法简单有理函数、简单无理函数及三角函数有理式的积分
2.考核要求
(1)理解原函数与不定积分的概念。
(2)理解不定积分的基本性质。
(3)掌握不定积分的基本公式。
(4)掌握不定积分的第一换元法、第二换元法(限于三角代换与简单的根式代换)和分部积分法。
(5)会求简单有理函数的不定积分(分解定理不做要求),会求简单无理函数及三角函数有理式的积分。
(二)定积分
1.知识范围
定积分的概念及性质变上限定积分及其导数牛顿—莱布尼茨(Newton—Leibniz)公式定积分的换元法和分布积分法定积分的应用(平面图形的面积,旋转体的体积)无穷区间的广义积分的概念与计算
2.考核要求
(1)理解定积分的概念,理解定积分的基本性质。
(2)理解变上限定积分是其上限的函数及其求导定理,掌握牛顿—莱不尼茨公式。
(3)掌握定积分的换元法和分布积分法,会证明一些简单的积分恒等式。
(4)掌握用定积分求平面图形的面积和简单的封闭图形绕坐标轴的旋转所成旋转体体积。
(5)了解无穷区间的广义积分概念,会计算无穷区间的广义积分。
四、向量代数与空间解析几何
(一)向量代数
1.知识范围
向量的概念向量的坐标表示方向余弦单位向量向量的线性运算向量的数量积与向量积及其运算两向量的夹角两向量垂直、平行的充分必要条件
2.考核要求
(1)理解空间直角坐标系,理解向量的概念及其表示;了解单位向量、向量的模与方向余弦,向量在坐标轴上的投影。
(2)掌握向量的线性运算、数量积、向量积,以及用坐标表达式进行向量运算的方法。
(3)掌握两向量平行、垂直的条件,会求向量的夹角。
(二)平面与直线
1.知识范围
平面点法式方程和一般式方程点到平面的距离空间直线的标准式(又称对称式或点向式)方程、一般式(又称交面式)方程和参数方程直线与直线、直线与平面、平面与平面平行、垂直的条件和夹角
2.考核要求
(1)掌握平面的方程,会判定两平面平行、垂直或重合。
(2)会求点到平面的距离。
(3)掌握空间直线式的标准方程、一般式方程、参数方程。
会判定两直线平行、垂直或重合。
(4)会判定直线与平面间的位置关系(垂直、平行、斜交或直线在平面上)。
(三)曲面的方程
1.知识范围
曲面方程的概念球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面常用的二次曲面
2.考核要求
(1)理解曲面方程的概念。
了解母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程及其图形。
(2)了解球面、椭球面、圆柱面、圆锥面和旋转抛物面等常用二次曲面的方程及其图形。
五、多元函数微分学
1.知识范围
多元函数的概念二元函数的极限与连续的概念偏导数、全微分的概念全微分存在的必要条件与充分条件二阶偏导数复合函数、隐函数的求导法偏导数的几何应用多元函数的极值、条件函数的概念多元函数极值的必要条件二元函数极值的充分条件极值的求法拉格朗日乘数法
2.考核要求
(1)理解多元函数的概念,了解二元函数的几何意义和定义域。
了解二元函数极限与连续概念(对计算不做要求)。
(2)理解偏导数的概念,了解全微分的概念和全微分存在的必要条件和充分条件。
(3)掌握二元初等函数的一、二阶偏导数的计算方法,会求全微分。
(4)掌握复合函数的一、二阶偏导数的计算方法(含抽象函数)。
(5)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶、二阶偏导数的求法。
(6)会求空间曲面的切平面方程和法线方程。
(7)会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求二元函数的最大值、最小值并会解一些简单的应用问题。
六、多元函数积分学
(一)二重积分
1.知识范围
二重积分的概念及性质二重积分的计算二重积分的几何应用
2.考核要求
(1)理解二重积分的概念,了解其性质。
(2)掌握二重积分(直角坐标系、极坐标系)的计算方法。
(3)会在直角坐标系内交换两次定积分的次序。
(4)会用二重积分求空间曲面所围成立体的体积。
(二)曲线积分
1.知识范围
对坐标的平面曲线积分的概念和性质对坐标的平面曲线积分的计算格林(Green)公式平面曲线积分与路径无关的条件
2.考核要求
(1).理解对坐标的平面曲线积分的概念及性质。
(2).掌握对坐标的曲线积分计算的方法。
(3).掌握格林公式,会应用平面曲线积分与路径无关的条件。
七、无穷级数
(一)常数项级数
1.知识范围
常数项级数收敛、发散的概念收敛级数的和级数收敛的基本性质和必要条件正项级数收敛性的比较判别法、比值判别法交错级数的莱布尼茨判别法绝对收敛与条件收敛
2.考核要求
(1).理解常数项级数收敛、发散以及收敛级数的和的概念。
理解级数的必要条件和基本性质。
(2).掌握几何级数的敛散性。
(3).掌握调和级数与P级数的敛散性。
(4).掌握正项级数的比值判别法,会用正项级数的比较判别法。
(5).会用莱布尼茨判别法判定交错级数收敛。
(6).了解级数绝对收敛与条件收敛的概念,会判定任意项级数的绝对收敛与条件收敛。
(二)幂级数
1.知识范围
幂级数的收敛半径、收敛区间和收敛域幂级数在收敛区间内的基本性质函数
的马克劳林(Maclaurin)展开式
2.考核要求
(1).了解幂级数的概念。
(2).了解幂级数在其收敛区间内的基本性质(逐项求和,逐项求导与逐项积分)。
(3).掌握幂级数的收敛半径、收敛域的方法(包括端点处的收敛性)。
(4).会运用
的马克劳林展开式,将一些简单的初等函数展开为x或某点的幂级数。
八、常微分方程
(一)微分方程基本概念
1.知识范围
常微分方程的概念微分方程的阶、解、通解、初始条件和特解
2.考核要求
(1)了解微分方程的阶、解、通解、初始条件和特解的概念。
(2)会验证常微分方程的解、通解和特解。
(3)会建立一些微分方程,解决简单的应用问题。
(二)一阶微分方程
1.知识范围
一阶可分离变量微分方程一阶线性微分方程
2.考核要求
(1)掌握一阶可分离变量微分方程的解法。
(2)会用公式法解一阶线性微分方程。
(三)二阶线性微分方程
1.知识范围
二阶线性微分方程解的性质和解的结构二阶常系数齐次线性微分方程二阶常系数非齐次线性微分方程
2.考核要求
(1)了解二阶线性微分方程解的性质和解的结构。
(2)掌握二阶常系数非齐次线性微分方程的解法。
(3)掌握二阶常系数非齐次线性微分方程特解的形式,其中自由项限定为(a是常数,是n次多项式)或(a,b,A,B是常数),并会求二阶常系数非齐次线性微分方程的通解。
九、线性代数
(一)行列式
1.知识范围
行列式的概念余子式和代数余子式行列式的性质行列式按一行(列)展开定理克莱姆(Cramer)法则及推论
2.考核要求
(1)了解行列式的定义,理解行列式的性质。
(2)理解行列式按一行(列)展开定理。
(3)掌握计算行列式的基本方法。
(4)会用克莱姆法则及推论解线性方程组。
(二)矩阵
1.知识范围
矩阵的概念矩阵的线性运算矩阵的乘法矩阵的转置单位矩阵对角矩阵三角矩阵方阵的行列式方阵乘积的行列式逆矩阵的概念矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换矩阵的秩初等变换求矩阵的秩和逆矩阵
2.考核要求
(1)了解矩阵的概念,了解单位矩阵、对角矩阵和三角矩阵。
(2)掌握矩阵的线性运算、乘法和矩阵的转置。
(3)会用伴随矩阵法求二、三阶方阵的逆矩阵。
(4)理解矩阵秩的概念,会用初等变换法求矩阵的秩和逆矩阵,会用简单的矩阵方程。
(三)线性方程组
1.知识范围
向量的概念向量组的线性相关与线性无关向量组的极大无关组向量组的秩与矩阵的秩的关系齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解得充分必要条件齐次线性方程组的基础解系和通解非齐次线性方程组的通解用行初等变换求解线性方程组的方法
2.考核要求
(1)理解n维向量的概念,理解向量组线性相关与线性无关的定义,了解向量组的极大无关组和向量组的秩的概念。
(2)了解判别向量组的线性相关性的方法。
(3)会求齐次线性方程组的基础解系,会求齐次线性方程组和非齐次线性方程组的一般解和通解。
专升本入学考试《高等数学》考试大纲
一 函数、极限、连续
考试内容
函数的概念及表示法:
函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立
数列极限与函数极限的定义及其性质:
函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算、极限存在的两个准则、单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质
考试要求
1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.
2、了解函数的有界性、单调性、周期性和奇偶性.
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4、掌握基本初等函数的性质及其图形,了解初等函数的概念.
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6、掌握极限的性质及四则运算法则.
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二 一元函数微分学
考试内容
导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的导数、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数的最大值和最小值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘
考试要求
1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3、了解高阶导数的概念,会求简单函数的高阶导数.
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5、理解并会使用罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理.
6、掌握用洛必达法则求未定式极限的方法.
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8、会用导数判断函数图形的凹凸性、会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形.
三 一元函数积分学
考试内容
原函数和不定积分的概念、不定积分的基本性质、基本积分公式、定积分的概念和基本性质、定积分中值定理、积分上限函数及其导数、牛顿一莱布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常积分、定积分的应用
考试要求
1、理解原函数的概念,理解不定积分和定积分的概念.
2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3、会求有理函数,三角函数有理式和简单无理函数的积分.
4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5、了解反常积分的概念,会计算反常积分.
6、掌握利用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积为已知的立体体积等)及函数的平均值.
四 向量代数和空间解析几何
考试内容
向量的概念、向量的线性运算、向量的数量积和向量积、两向量垂直、平行的条件、两向量的夹角、向量的坐标表达式及其运算、单位向量、方向余弦 曲面方程和空间曲线方程的概念、平面方程、直线方程、平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、球面、柱面、旋转曲面等常用的二次曲面方程及其图形、空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程
考试要求
1、理解空间直角坐标系,理解向量的概念及其表示.
2、掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件.
3、理解单位向量、方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4、掌握平面方程和直线方程及其求法.
5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6、会求点到直线以及点到平面的距离.
7、了解曲面方程和空间曲线方程的概念.
8、掌握常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
9、掌握空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
五 多元函数微分学
考试内容
多元函数的概念、二元函数的极限与连续的概念、有界闭区域上多元连续函数的性质、多元函数的偏导数和全微分、全微分存在的必要条件和充分条件多元复合函数、隐函数(仅限一个方程的情形)的一阶偏导数、二阶偏导数、方向导数和梯度、空间曲线的切线和法平面、曲面的切平面和法线、多元函数的极值和条件极值、多元函数的最大值、最小值及其简单应用
考试要求
1、理解多元函数的概念,理解二元函数的几何意义.
2、了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4、理解方向导数与梯度的概念,并掌握其计算方法.
5、掌握多元复合函数一阶、二阶偏导数的求法.
6、会求隐函数(仅限一个方程的情形)的一阶偏导数、二阶偏导数.
7、掌握空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
六 多元函数积分学
考试内容
二重积分的概念、性质、计算和应用
考试要求
1、理解二重积分的概念,了解二重积分的性质,了解二重积分的中值定理.
2、掌握二重积分的计算方法(直角坐标、极坐标),
3、会用二重积分求一些几何量(平面图形的面积、立体的体积、曲面的面积).
七 常微分方程
考试内容
常微分方程的基本概念、可分离变量的微分方程、齐次微分方程、一阶线性微分方程、贝努利方程、二阶线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程
考试要求
1、了解微分方程及其阶、解、通解、初始条件和特解等概念.
2、掌握可分离变量的微分方程及一阶线性微分方程的解法.
3、会解齐次微分方程、贝努利方程,会用简单的变量代换解某些微分方程.
4、理解线性微分方程解的性质及解的结构.
5、掌握二阶常系数齐次线性微分方程的解法.
6、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 专业课 考试 大纲 汇总