勾股定理经典例题教师版.docx
- 文档编号:1093447
- 上传时间:2022-10-16
- 格式:DOCX
- 页数:14
- 大小:258.82KB
勾股定理经典例题教师版.docx
《勾股定理经典例题教师版.docx》由会员分享,可在线阅读,更多相关《勾股定理经典例题教师版.docx(14页珍藏版)》请在冰豆网上搜索。
勾股定理经典例题教师版
勾股定理全章知识点和典型例习题
1、基础知识点:
1.勾股定理
内容:
表示方法:
如果直角三角形的两直角边分别为,,斜边为,那么
2.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,
则②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题
4.勾股定理的逆定理
如果三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;
②定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边
③勾股定理的逆定理在用问题描述时,不能说成:
当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形
5.勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数
②记住常见的勾股数可以提高解题速度,如;;;等
③用含字母的代数式表示组勾股数:
(为正整数);
(为正整数)(,为正整数)7.勾股定理的应用
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.
6、互逆命题的概念
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
类型一:
勾股定理的直接用法
1、在Rt△ABC中,∠C=90°
(1)已知a=6,c=10,求b,
(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.
思路点拨:
写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
举一反三
【变式】:
如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?
【答案】∵∠ACD=90°
AD=13,CD=12
∴AC2=AD2-CD2
=132-122
=25
∴AC=5
又∵∠ABC=90°且BC=3
∴由勾股定理可得
AB2=AC2-BC2
=52-32
=16
∴AB=4
∴AB的长是4.
类型二:
勾股定理的构造应用
2、如图,已知:
在中,,,.求:
BC的长.
思路点拨:
由条件,想到构造含角的直角三角形,为此作于D,则有
,,再由勾股定理计算出AD、DC的长,进而求出BC的长.
解析:
作于D,则因,
∴(的两个锐角互余)
∴(在中,如果一个锐角等于,
那么它所对的直角边等于斜边的一半).
根据勾股定理,在中,
.
根据勾股定理,在中,
.
∴.
举一反三【变式1】如图,已知:
,,于P.求证:
.
解析:
连结BM,根据勾股定理,在中,
.
而在中,则根据勾股定理有
.
∴
又∵(已知),
∴.
在中,根据勾股定理有
,
∴.
【变式2】已知:
如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:
四边形ABCD的面积。
分析:
如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
解析:
延长AD、BC交于E。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,
∴BE2=AE2-AB2=82-42=48,BE==。
∵DE2=CE2-CD2=42-22=12,∴DE==。
∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=
类型三:
勾股定理的实际应用
(一)用勾股定理求两点之间的距离问题
3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
解析:
(1)过B点作BE//AD
∴∠DAB=∠ABE=60°
∵30°+∠CBA+∠ABE=180°
∴∠CBA=90°
即△ABC为直角三角形
由已知可得:
BC=500m,AB=
由勾股定理可得:
所以
(2)在Rt△ABC中,
∵BC=500m,AC=1000m
∴∠CAB=30°
∵∠DAB=60°
∴∠DAC=30°
即点C在点A的北偏东30°的方向
举一反三
【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?
【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.
解:
OC=1米(大门宽度一半),
OD=0.8米(卡车宽度一半)
在Rt△OCD中,由勾股定理得:
CD===0.6米,
CH=0.6+2.3=2.9(米)>2.5(米).
因此高度上有0.4米的余量,所以卡车能通过厂门.
(二)用勾股定理求最短问题
4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
思路点拨:
解答本题的思路是:
最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.
解析:
设正方形的边长为1,则图
(1)、图
(2)中的总线路长分别为
AB+BC+CD=3,AB+BC+CD=3
图(3)中,在Rt△ABC中
同理
∴图(3)中的路线长为
图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH
由∠FBH=及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为4EA+EF=
3>2.828>2.732
∴图(4)的连接线路最短,即图(4)的架设方案最省电线.
举一反三
【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.
解:
如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定理得
(提问:
勾股定理)
∴AC===≈10.77(cm)(勾股定理).
答:
最短路程约为10.77cm.
类型四:
利用勾股定理作长为的线段
5、作长为、、的线段。
思路点拨:
由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。
作法:
如图所示
(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;
(2)以AB为一条直角边,作另一直角边为1的直角。
斜边为;
(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是
、、、。
举一反三【变式】在数轴上表示的点。
解析:
可以把看作是直角三角形的斜边,,
为了有利于画图让其他两边的长为整数,
而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。
作法:
如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,
以O为圆心做弧,弧与数轴的交点B即为。
类型五:
逆命题与勾股定理逆定理
6、写出下列原命题的逆命题并判断是否正确
1.原命题:
猫有四只脚.(正确)
2.原命题:
对顶角相等(正确)
3.原命题:
线段垂直平分线上的点,到这条线段两端距离相等.(正确)
4.原命题:
角平分线上的点,到这个角的两边距离相等.(正确)
思路点拨:
掌握原命题与逆命题的关系。
解析:
1.逆命题:
有四只脚的是猫(不正确)
2.逆命题:
相等的角是对顶角(不正确)
3.逆命题:
到线段两端距离相等的点,在这条线段的垂直平分线上.(正确)
4.逆命题:
到角两边距离相等的点,在这个角的平分线上.(正确)
总结升华:
本题是为了学习勾股定理的逆命题做准备。
7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。
思路点拨:
要判断ΔABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。
解析:
由a2+b2+c2+50=6a+8b+10c,得:
a2-6a+9+b2-8b+16+c2-10c+25=0,
∴(a-3)2+(b-4)2+(c-5)2=0。
∵(a-3)2≥0,(b-4)2≥0,(c-5)2≥0。
∴a=3,b=4,c=5。
∵32+42=52,
∴a2+b2=c2。
由勾股定理的逆定理,得ΔABC是直角三角形。
总结升华:
勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。
举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
【答案】:
连结AC
∵∠B=90°,AB=3,BC=4
∴AC2=AB2+BC2=25(勾股定理)
∴AC=5
∵AC2+CD2=169,AD2=169
∴AC2+CD2=AD2
∴∠ACD=90°(勾股定理逆定理)
【变式2】已知:
△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.
分析:
本题是利用勾股定理的的逆定理,只要证明:
a2+b2=c2即可
证明:
所以△ABC是直角三角形.
【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。
请问FE与DE是否垂直?
请说明。
【答案】答:
DE⊥EF。
证明:
设BF=a,则BE=EC=2a,AF=3a,AB=4a,
∴EF2=BF2+BE2=a2+4a2=5a2;
DE2=CE2+CD2=4a2+16a2=20a2。
连接DF(如图)
DF2=AF2+AD2=9a2+16a2=25a2。
∴DF2=EF2+DE2,
∴FE⊥DE。
经典例题精析
类型一:
勾股定理及其逆定理的基本用法
1、若直角三角形两直角边的比是3:
4,斜边长是20,求此直角三角形的面积。
思路点拨:
在直角三角形中知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 经典 例题 教师版