第七届蓝桥杯CC++B组题解.docx
- 文档编号:10881013
- 上传时间:2023-02-23
- 格式:DOCX
- 页数:29
- 大小:26.10KB
第七届蓝桥杯CC++B组题解.docx
《第七届蓝桥杯CC++B组题解.docx》由会员分享,可在线阅读,更多相关《第七届蓝桥杯CC++B组题解.docx(29页珍藏版)》请在冰豆网上搜索。
第七届蓝桥杯CC++B组题解
第一题
煤球数目
有一堆煤球,堆成三角棱锥形。
具体:
第一层放1个,
第二层3个(排列成三角形),
第三层6个(排列成三角形),
第四层10个(排列成三角形),
....
如果一共有100层,共有多少个煤球?
请填表示煤球总数目的数字。
注意:
你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
这道题坑死了,第一次看堆成三角棱锥形,草稿本画半天都没画出个三角棱锥。
后来单独看每句话才知道每层一个三角形叠起来就是三角棱锥。
我去。
看懂题目这个题目就很简单了,每层的个数是上层的个数加上层数,意思就是An=An-1+n,然而题目是求的前100层一共多少煤球。
所以是Sn.代码双重for循环就出来了。
答案是:
171700
1.#include
2.int main()
3.{
4. int a[101] ={0};
5. for(int i = 1 ; i < 101 ; i ++)
6. a[i] = a[i-1] + i;
7. int ans = 0;
8. for(int j = 1 ; j < 101 ; j ++)
9. ans += a[j];
10. printf("%d\n",ans);
11. return 0;
12.}
第二题:
生日蜡烛
某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛。
现在算起来,他一共吹熄了236根蜡烛。
请问,他从多少岁开始过生日party的?
请填写他开始过生日party的年龄数。
注意:
你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
呵呵,水题,但是出题人不严谨啊!
!
!
怎么就不能考虑万一他今年236岁呢....好了不说了强迫症犯了。
蓝桥杯这种不像acm的题目的,能暴力直接暴力。
不用想太多。
直接从1~236枚举start,end分别表示他开始过生日的年龄和今年的年龄,然后计算之间吹蜡烛的总和如果等于236就输出start,end. 答案是:
26
1.#include
2.int main()
3.{
4. int start,end;
5. for(start = 1 ; start < 236 ; start ++)
6. {
7. for( end = start ; end < 236 ; end ++ )
8. {
9. int sum = 0;
10. for(int i = start; i <= end; i ++)
11. sum += i;
12. if( sum == 236)
13. {
14. printf("start :
%d end :
%d\n",start,end);
15. }
16. }
17. }
18. return 0;
19.}
第三题:
凑算式
B DEF
A+—+-———=10
C GHI
(如果显示有问题,可以参见【图1.jpg】)
这个算式中A~I代表1~9的数字,不同的字母代表不同的数字。
比如:
6+8/3+952/714就是一种解法,
5+3/1+972/486是另一种解法。
这个算式一共有多少种解法?
注意:
你提交应该是个整数,不要填写任何多余的内容或说明性文字。
这个题不多说了,直接暴力生成9的全排列然后去验证等式是否成立,只是验证的时候如果防止精度问题可以通分把除法变成乘法。
答案是:
29
1.#include
2.int ans = 0;
3.int num[10];
4.bool visit[10];
5.void Solve()
6.{
7. double sum = num[0] + (double)num[1] / num[2] + (double)(num[3]*100+num[4]*10+num[5])/(num[6]*100+num[7]*10+num[8]);
8. if(sum == 10)
9. {
10. ans ++;
11. }
12.}
13.void dfs(int index)
14.{
15. if(index == 9)
16. {
17. Solve();
18. return ;
19. }
20. for(int i = 1 ; i < 10 ; i ++)
21. {
22. if(!
visit[i])
23. {
24. visit[i] = true;
25. num[index] = i;
26. dfs(index+1);
27. visit[i] = false;
28. }
29. }
30.}
31.int main()
32.{
33. dfs(0);
34. printf("%d\n",ans);
35. return 0;
36.}
第四题:
快速排序
排序在各种场合经常被用到。
快速排序是十分常用的高效率的算法。
其思想是:
先选一个“标尺”,
用它把整个队列过一遍筛子,
以保证:
其左边的元素都不大于它,其右边的元素都不小于它。
这样,排序问题就被分割为两个子区间。
再分别对子区间排序就可以了。
下面的代码是一种实现,请分析并填写划线部分缺少的代码。
#include
voidswap(inta[],inti,intj)
{
intt=a[i];
a[i]=a[j];
a[j]=t;
}
intpartition(inta[],intp,intr)
{
inti=p;
intj=r+1;
intx=a[p];
while
(1){
while(i while(a[--j]>x); if(i>=j)break; swap(a,i,j); } ______________________; returnj; } voidquicksort(inta[],intp,intr) { if(p intq=partition(a,p,r); quicksort(a,p,q-1); quicksort(a,q+1,r); } } intmain() { inti; inta[]={5,13,6,24,2,8,19,27,6,12,1,17}; intN=12; quicksort(a,0,N-1); for(i=0;i printf("\n"); return0; } 注意: 只填写缺少的内容,不要书写任何题面已有代码或说明性文字。 这个题目如果接触过快排,了解过快速排序的原理的应该是送分题目,只不过快排单步(就是将一堆数按照某个数作为基准数分成左右两堆)这个实现方式有几种代码表现。 在这里答案是swap(a,p,j). 第五题: 抽签 X星球要派出一个5人组成的观察团前往W星。 其中: A国最多可以派出4人。 B国最多可以派出2人。 C国最多可以派出2人。 .... 那么最终派往W星的观察团会有多少种国别的不同组合呢? 下面的程序解决了这个问题。 数组a[]中既是每个国家可以派出的最多的名额。 程序执行结果为: DEFFF CEFFF CDFFF CDEFF CCFFF CCEFF CCDFF CCDEF BEFFF BDFFF BDEFF BCFFF BCEFF BCDFF BCDEF .... (以下省略,总共101行) #include #defineN6 #defineM5 #defineBUF1024 voidf(inta[],intk,intm,charb[]) { inti,j; if(k==N){ b[M]=0; if(m==0)printf("%s\n",b); return; } for(i=0;i<=a[k];i++){ for(j=0;j ______________________;//填空位置 } } intmain() { inta[N]={4,2,2,1,1,3}; charb[BUF]; f(a,0,M,b); return0; } 仔细阅读代码,填写划线部分缺少的内容。 注意: 不要填写任何已有内容或说明性文字。 这个题目是这样的,对于f(inta[],intk,intm,charb[]).a[]是每个国家的最多指派人数,k表示当前是哪个国家,m表示还需要派送几个人(可以为负数).b表示已经派送的人的字符串。 所以这个题目在递归中间的的第一个循环表示从0~a[i]中让i国选择指派人数,内循环只是向b[]记录的过程。 所以答案是f(a,k+1,m-i,b). 因为这里I=j.应该 f(a,k+1,m-j,b)也可以。 第六题: 方格填数 如下的10个格子 (如果显示有问题,也可以参看【图1.jpg】) 填入0~9的数字。 要求: 连续的两个数字不能相邻。 (左右、上下、对角都算相邻) 一共有多少种可能的填数方案? 请填写表示方案数目的整数。 注意: 你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。 这个题目题目有点表述不明,不知道0~9可不可以重复使用。 我当时做的时候是当作不可以重复使用来处理的。 那么这里我就先当作不可重复使用来讲解。 这里题目还是一样先往里面填数。 用生成排列的形式。 填写完了之后再判断是否可行。 答案是: 1580 1.#include 2.#include 3.int flag[3][4]; //表示哪些可以填数 4.int mpt[3][4]; //填数 5.bool visit[10]; 6.int ans = 0; 7.void init() //初始化 8.{ 9. int i,j; 10. for(i = 0 ; i < 3 ; i ++) 11. for(j = 0 ; j < 4 ; j ++) 12. flag[i][j] = 1; 13. flag[0][0] = 0; 14. flag[2][3] = 0; 15.} 16.void Solve() 17.{ 18. int dir[8][2] = { 0,1,0,-1,1,0,-1,0,1,1,1,-1,-1,1,-1,-1}; 19. int book = true; 20. for(int i = 0 ; i < 3 ; i ++) 21. { 22. for(int j = 0 ; j < 4; j ++) 23. { 24. //判断每个数周围是否满足 25. if(flag[i][j] == 0)continue; 26. for( int k = 0 ; k < 8 ; k ++) 27. { 28. int x,y; 29. x = i + dir[k][0]; 30. y = j + dir[k][1]; 31. if(x < 0 || x >= 3 || y < 0 || y >= 4 || flag[x][y] == 0) continue; 32. if(abs(mpt[x][y] - mpt[i][j]) == 1) book = false; 33. } 34. } 35. } 36. if(book) ans ++; 37.} 38.void dfs(int index) 39.{ 40. int x,y; 41. x = index / 4; 42. y = index % 4; 43. if( x == 3) 44. { 45. Solve(); 46. return; 47. } 48. if(flag[x][y]) 49. { 50. for(int i = 0 ; i < 10 ; i ++) 51. { 52. if(! visit[i]) 53. { 54. visit[i] = true; 55. mpt[x][y] = i; 56. dfs(index+1); 57. visit[i] = false; 58. } 59. } 60. } 61. else 62. { 63. dfs(index+1); 64. } 65.} 66.int main() 67.{ 68. init(); 69. dfs(0); 70. printf("%d\n",ans); 71. return 0; 72.} 第七题: 剪邮票 如【图1】,有12张连在一起的12生肖的邮票。 现在你要从中剪下5张来,要求必须是连着的。 (仅仅连接一个角不算相连) 比如,【图2】,【图3】中,粉红色所示部分就是合格的剪取。 请你计算,一共有多少种不同的剪取方法。 请填写表示方案数目的整数。 注意: 你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。 其实这个题目还是可前面的一样,先生成,再判断是否可行。 这里我们可以先用搜索从12个数里面将所有5个数的组合找出来。 然后再用深搜判断这五个是否连在一起。 答案是: 116 1.#include 2.#include 3.int mpt[3][4]; 4.int mpt_visit[3][4]; 5.int num[6]; 6.int have[13]; 7.int visit[13]; 8.int ans = 0; 9.int Count = 0; 10.void init() 11.{ 12. int k = 1; 13. for(int i = 0 ; i < 3 ; i ++) 14. for(int j = 0 ; j < 4 ; j ++) 15. { 16. mpt[i][j] = k; 17. k ++; 18. } 19.} 20.int dir[4][2] = {0,1,0,-1,-1,0,1,0}; 21.//判断五个数是否能连在一起 22.void dfs_find(int x,int y) 23.{ 24. for(int i = 0 ; i < 4 ; i++) 25. { 26. int tx,ty; 27. tx = x + dir[i][0]; 28. ty = y + dir[i][1]; 29. if(tx < 0 || tx >= 3 || ty < 0 || ty >= 4) continue; 30. if(have[mpt[tx][ty]] == 0 || mpt_visit[tx][ty])continue; 31. mpt_visit[tx][ty] = 1; 32. Count ++; 33. dfs_find(tx,ty); 34. } 35.} 36.void Solve() 37.{ 38. int i; 39. memset(have,0,sizeof(have)); 40. memset(mpt_visit,0,sizeof(mpt_visit)); 41. for(i = 1; i < 6 ; i ++) have[num[i]] = 1; 42. for(i = 0 ; i < 12 ; i ++) 43. { 44. int x,y; 45. x = i / 4; 46. y = i % 4; 47. if(have[mpt[x][y]]) 48. { 49. Count = 1; 50. mpt_visit[x][y] =1; 51. dfs_find(x,y); 52. break; 53. } 54. } 55. if(Count == 5) 56. { 57. ans ++; 58. } 59.} 60.//创建5个数的组合 61.void dfs_creat(int index) 62.{ 63. if(index == 6) 64. { 65. Solve(); 66. return; 67. } 68. for(int i = num[index-1] + 1; i < 13 ; i ++) 69. { 70. if(! visit[i]) 71. { 72. visit[i] = true; 73. num[index] = i; 74. dfs_creat(index+1); 75. visit[i] = false; 76. } 77. } 78.} 79.int main() 80.{ 81. init(); 82. dfs_creat (1); 83. printf("%d\n",ans); 84. return 0; 85.} 第八题: 四平方和 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和。 如果把0包括进去,就正好可以表示为4个数的平方和。 比如: 5=0^2+0^2+1^2+2^2 7=1^2+1^2+1^2+2^2 (^符号表示乘方的意思) 对于一个给定的正整数,可能存在多种平方和的表示法。 要求你对4个数排序: 0<=a<=b<=c<=d 并对所有的可能表示法按a,b,c,d为联合主键升序排列,最后输出第一个表示法 程序输入为一个正整数N(N<5000000) 要求输出4个非负整数,按从小到大排序,中间用空格分开 例如,输入: 5 则程序应该输出: 0012 再例如,输入: 12 则程序应该输出: 0222 再例如,输入: 773535 则程序应该输出: 11267838 资源约定: 峰值内存消耗<256M CPU消耗<3000ms 请严格按要求输出,不要画蛇添足地打印类似: “请您输入...”的多余内容。 所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 注意: main函数需要返回0 注意: 只使用ANSIC/ANSIC++标准,不要调用依赖于编译环境或操作系统的特殊函数。 注意: 所有依赖的函数必须明确地在源文件中#include 提交时,注意选择所期望的编译器类型。 这个题目很水也是搜索能做的。 但是有点技巧,这里我贡献两个方法给大家参考。 方法一: O(n^3/2).先暴力枚举前三个数然后做减法判断差是否为一个完全平方数即可。 当然虽然这个题目是n^3/2看数据貌似过不了。 但是貌似我找了几组数据都能秒出结果。 应该是绝大多数最外层循环都不会太多。 1.#include 2.#include 3.int main() 4.{ 5. int n; 6. int flag = false; 7.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 届蓝桥杯 CC 题解