届湖南省长沙市湖南师范大学附中高考模拟一数学理试题.docx
- 文档编号:1083270
- 上传时间:2022-10-16
- 格式:DOCX
- 页数:26
- 大小:802.09KB
届湖南省长沙市湖南师范大学附中高考模拟一数学理试题.docx
《届湖南省长沙市湖南师范大学附中高考模拟一数学理试题.docx》由会员分享,可在线阅读,更多相关《届湖南省长沙市湖南师范大学附中高考模拟一数学理试题.docx(26页珍藏版)》请在冰豆网上搜索。
届湖南省长沙市湖南师范大学附中高考模拟一数学理试题
2019届湖南省长沙市湖南师范大学附中高考模拟
(一)数学(理)试题
一、单选题
1.已知复数(为虚数单位),则下列说法正确的是()
A.的虚部为B.复数在复平面内对应的点位于第三象限
C.的共轭复数D.
【答案】D
【解析】利用的周期性先将复数化简为即可得到答案.
【详解】
因为,,,所以的周期为4,故,
故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共
轭复数为,C错误;,D正确.
故选:
D.
【点睛】
本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.
2.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:
①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()
A.B.C.D.
【答案】C
【解析】利用线线、线面、面面相应的判定与性质来解决.
【详解】
如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线
平行于平面与平面的交线时也有,,故②错误;若,则垂直平面
内以及与平面平行的所有直线,故③正确;若,则存在直线且,因
为,所以,从而,故④正确.
故选:
C.
【点睛】
本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.
3.给出下列四个命题:
①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()
A.B.C.D.
【答案】B
【解析】①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,
④利用集合间的包含关系判断.
【详解】
若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;
由特称命题的否定是全称命题知③正确;因为,所以,所以“”是“”的必要条件,
故④正确.
故选:
B.
【点睛】
本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.
4.执行下面的程序框图,如果输入,,则计算机输出的数是()
A.B.C.D.
【答案】B
【解析】先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.
【详解】
本程序框图的功能是计算,中的最大公约数,所以,
,,故当输入,,则计算机输出的数
是57.
故选:
B.
【点睛】
本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.
5.已知,且,则的值为()
A.B.C.D.
【答案】A
【解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.
【详解】
因为,所以,又,所以,
,所以.
故选:
A.
【点睛】
本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.
6.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()
A.甲件,乙件B.甲件,乙件C.甲件,乙件D.甲件,乙件
【答案】D
【解析】由题意列出约束条件和目标函数,数形结合即可解决.
【详解】
设购买甲、乙两种商品的件数应分别,利润为元,由题意,
画出可行域如图所示,
显然当经过时,最大.
故选:
D.
【点睛】
本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.
7.已知函数,给出下列四个结论:
①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()
A.B.C.D.
【答案】C
【解析】化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由
得可判断④.
【详解】
由题意,,所以,故①正确;
为偶函数,故②错误;当
时,,单调递减,故③正确;若对任意,都有
成立,则为最小值点,为最大值点,则的最小值为
,故④正确.
故选:
C.
【点睛】
本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.
8.已知函数,若对任意,都有成立,则实数的取值范围是()
A.B.C.D.
【答案】D
【解析】先将所求问题转化为对任意恒成立,即得图象恒在函数
图象的上方,再利用数形结合即可解决.
【详解】
由得,由题意函数得图象恒在函数图象的上方,
作出函数的图象如图所示
过原点作函数的切线,设切点为,则,解得,所以切
线斜率为,所以,解得.
故选:
D.
【点睛】
本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.
9.如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是()
A.B.C.D.
【答案】C
【解析】以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.
【详解】
以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,
则,,设,则,所以,且,
故.
故选:
C.
【点睛】
本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.
10.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:
先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()
A.B.C.D.
【答案】B
【解析】先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.
【详解】
因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,
则,由几何概型的概率计算公式知,
所以.
故选:
B.
【点睛】
本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.
11.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()
A.B.C.D.
【答案】A
【解析】由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.
【详解】
由已知可得,,所以,从而双曲线方程为
,不妨设点在双曲线右支上运动,则,当时,
此时,所以,
,所以;
当轴时,,所以,又为锐角三
角形,所以.
故选:
A.
【点睛】
本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.
12.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()
A.B.C.D.
【答案】C
【解析】先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.
【详解】
当时,,所以,故当
时,,所以,而
,所以,又当时,
的极大值为1,所以当时,的极大值为,设方程
的最小实根为,,则,即,此时
令,得,所以最小实根为411.
故选:
C.
【点睛】
本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.
二、填空题
13.设,则除以的余数是______.
【答案】1
【解析】利用二项式定理得到,将89写成1+88,然后再利用二项式定理展开即可.
【详解】
,因展开式中
后面10项均有88这个因式,所以除以的余数为1.
故答案为:
1
【点睛】
本题考查二项式定理的综合应用,涉及余数的问题,解决此类问题的关键是灵活构造二项式,并将它展开分析,本题是一道基础题.
14.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.
【答案】
【解析】先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.
【详解】
由三视图知该几何体是一个三棱锥,如图所示
长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的
表面积.
故答案为:
.
【点睛】
本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.
15.如图,的外接圆半径为,为边上一点,且,,则的面积为______.
【答案】
【解析】先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.
【详解】
依题意可得,由正弦定理得,即,由图可
知是钝角,所以,,在三角形ABD中,,
,在三角形ADC中,由正弦定理得即,
所以,,故,,,故的面积为
.
故答案为:
.
【点睛】
本题考查正弦定理解三角形,考查学生的基本计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.
16.如图,在平面四边形中,点,是椭圆短轴的两个端点,点在椭圆上,,记和的面积分别为,,则______.
【答案】
【解析】依题意易得A、B、C、D四点共圆且圆心在x轴上,然后设出圆心,由圆的方程与椭圆方程联立得到B的横坐标,进一步得到D横坐标,再由计算比值即可.
【详解】
因为,所以A、B、C、D四点共圆,直径为,又A、C关于x轴对称,
所以圆心E在x轴上,设圆心E为,则圆的方程为,联立椭圆方程
消y得,解得,故B的横坐标为,又B、D中点是E,所以D的横坐标为,
故.
故答案为:
.
【点睛】
本题考查椭圆中的四点共圆及三角形面积之比的问题,考查学生基本计算能力及转化与化归思想,本题关键是求出B、D横坐标,是一道有区分度的压轴填空题.
三、解答题
17.在数列中,已知,且,.
(1)求数列的通项公式;
(2)设,数列的前项和为,证明:
.
【答案】
(1);
(2)见解析.
【解析】
(1)由已知变形得到,从而是等差数列,然后利用等差数列的通项公式计算即可;
(2)先求出数列的通项,再利用裂项相消法求出即可.
【详解】
(1)由已知,,即,又,则数列是以1为首项3
为公差的等差数列,所以,即.
(2)因为,则,
所以,又
是递增数列,所以,综上,.
【点睛】
本题考查由递推公式求数列通项公式、裂项相消法求数列的和,考查学生的计算能力,是一道基础题.
18.如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.
(1)证明:
;
(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.
【答案】
(1)见解析;
(2).
【解析】
(1)要证明,只需证明平面即可;
(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.
【详解】
(1)连结AC、AE,由已知,四边形ABCE为正方形,则①,因为底面
,则②,由①②知平面,所以.
(2)以C为原点,建立如图所示的空间直角坐标系,
则,,,
,所以,,,设,
,则,所以
,设,则
,所以当,即时,取最大值,
从而取最小值,即直线与直线所成的角最小,此时,
则,因为,,则平面,从而M到平面的
距离,所以.
【点睛】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 长沙市 湖南 师范大学 附中 高考 模拟 学理 试题