不变矩阵视觉模式识别英文文献翻译.docx
- 文档编号:1070484
- 上传时间:2022-10-16
- 格式:DOCX
- 页数:40
- 大小:802.43KB
不变矩阵视觉模式识别英文文献翻译.docx
《不变矩阵视觉模式识别英文文献翻译.docx》由会员分享,可在线阅读,更多相关《不变矩阵视觉模式识别英文文献翻译.docx(40页珍藏版)》请在冰豆网上搜索。
不变矩阵视觉模式识别英文文献翻译
VisualPatternRecognitionbyMomentInvariants
MING-KUEIHU,SENIORMEMBER,IRE
Summary
Inthispaperatheoryoftwo-dimensionalmomentinvariantsforplanargeometricfiguresispresented.Afundamentaltheoremisestablishedtorelatesuchmomentinvariantstothewellknownalgebraicinvariants.Completesystemsofmomentinvariantsundertranslation,similitudeandorthogonaltransformationsarederived.Somemomentinvariantsundergeneraltwo-dimensionallineartransformationsarealsoincluded.
Boththeoreticalformulationandpracticalmodelsofvisualpatternrecognitionbaseduponthesemomentinvariantsarediscussed.ASimplesimulationprogramtogetherwithitsperformancearealsopresented.Itisshownthatrecognitionofgeometricalpatternsandalphabeticalcharactersindependentlyofposition,sizeandorientationcanbeaccomplished.Itisalsoindicatedthatgeneralizationispossibletoincludeinvariancewithparallelprojection.
I.INTRODUCTION
Recognitionofvisualpatternsandcharactersindependentofposition,size,andorientationinthevisualfieldhasbeenagoalofmuchrecentresearch.Toachievemaximumutilityandflexibility,themethodsusedshouldbeinsensitivetovariationsinshapeandshouldprovideforimprovedperformancewithrepeatedtrials.Themethodpresentedinthispapermeetsalltheseconditionstosomedegree.
Ofthemanyingeniousandinterestingmethodssofardevised,onlytwomaincategorieswillbementionedhere:
1)Theproperty-listapproach,and2)Thestatisticalapproach,includingboththedecisiontheoryandrandomnetapproaches[1].Theproperty-listmethodworksverywellwhenthelistisdesignedforaparticularsetofpatterns.Intheory,itistrulyposition,size,andorientationindependent,andmayalsoallowforothervariations.Itsseverelimitationisthatitbecomesquiteuseless,ifadifferentsetofpatternsispresentedtoit.Thereisnoknownmethodwhichcangenerateautomaticallyanewproperty-list.Ontheotherhand,thestatisticalapproachiscapableofhandlingnewsetsofpatternswithlittledifficulty,butitislimitedinitsabilitytorecognizepatternsindependentlyofposition,sizeandorientation.
Thispaperreportsthemathematicalfoundationoftwodimensionalmomentinvariantsandtheirapplicationstovisualinformationprocessing[2].Theresultsshowthatrecognitionschemesbasedontheseinvariantscouldbetrulyposition,sizeandorientationindependent,andalsoflexibleenoughtolearnalmostanysetofpatterns.
Inclassicalmechanicsandstatisticaltheory,theconceptofmomentsisusedextensively;centralmoments,sizenormalization,andprincipalaxesarealsoused.Totheauthor’sknowledge,thetwo-dimensionalmomentinvariants,absoluteaswellasrelative,thataretobepresentedhavenotbeenstudied.Inthepatternrecognitionfield,centroidandsizenormalizationhavebeenexploited[3]-[5]for“preprocessing.”Orientationnormalizationhasalsobeenattempted[5].Themethodpresentedhereachievesorientationindependencewithoutambiguitybyusingeitherabsoluteorrelativeorthogonalmomentinvariants.Themethodfurtheruses“momentinvariants”(tobedescribedinIII)orinvariantmoments(momentsreferredtoapairofuniquelydeterminedprincipalaxes)tocharacterizeeachpatternforrecognition.
SectionIIgivesdefinitionsandpropertiesoftwodimensionalmomentsandalgebraicinvariants.Themomentinvariantsundertranslation,similitude,orthogonaltransformationsandalsounderthegenerallineartransformationsaredevelopedinSectionIII.TwospecificmethodsofusingmomentinvariantsforpatternrecognitionaredescribedinIV.Asimulationprogramofasimplemodel(programmedforanLGP-30),theperformanceoftheprogram,andsomepossiblegeneralizationsaredescribedinSectionV.
II.MOMENTSANDALGEBRAICINVARIANTS
A.AUniquenessTheoremConcerningMoments
Inthispaper,thetwo-dimensional(p+q)thordermomentsofadensitydistributionfunctionρ(x,y)aredefinedintermsofRiemannintegralsas
Ifitisassumedthatρ(x,y)isapiecewisecontinuousthereforeboundedfunction,andthatitcanhavenonzerovaluesonlyinthefinitepartofthexyplane;thenmomentsofallordersexistandthefollowinguniquenesstheoremcanbeproved.
UniquenessTheorem:
Thedoublemomentsequence{mpq}isuniquelydeterminedbyρ(x,y);andconversely,ρ(x,y)isuniquelydeterminedby{mpq}.
Itshouldbenotedthatthefinitenessassumptionisimportant;otherwise,theaboveuniquenesstheoremmightnothold.
B.CharacteristicFunctionandMomentGeneratingFunction
Thecharacteristicfunctionandmomentgeneratingofρ(x,y)maybedefined,respectively,as
Inbothcases,uandvareassumedtobereal.Ifmomentsofallordersexist,thenbothfunctionscanbeexpandedintopowerseriesintermsofthemomentsmpqas
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不变 矩阵 视觉 模式识别 英文 文献 翻译