九宫格数独共30页.docx
- 文档编号:10678313
- 上传时间:2023-02-22
- 格式:DOCX
- 页数:22
- 大小:27.17KB
九宫格数独共30页.docx
《九宫格数独共30页.docx》由会员分享,可在线阅读,更多相关《九宫格数独共30页.docx(22页珍藏版)》请在冰豆网上搜索。
九宫格数独共30页
九宫格数独
九宫格数独,是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数字谜题。
数独盘面是个九宫,每一宫又分为九个小格。
在这八十一格中给出一定的已知数字和解题条件,利用逻辑和推理,在其他的空格上填入1-9的数字。
使1-9每个数字在每一行、每一列和每一宫中都只出现一次。
这种游戏全面考验做题者观察能力和推理能力,虽然玩法简单,但数字排列方式却千变万化,所以不少教育者认为数独是训练头脑的绝佳方式。
数独的历史
数独是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
拼图是九宫格(即3格宽×3格高)的正方形状,每一格又细分为一个九宫格。
在每一个小九宫格中,分别填上1至9的数字,让整个大九宫格每一列、每一行的数字都不重复。
数独的基础是数字魔方,它的解也一定是数字魔方。
制作一个数独,便是使用一个一般的数字魔方,盖住部分数字,成为一个拥有唯一解的数独。
数独是现在最流行,最时尚的游戏。
流行度甚至超过了俄罗斯方块。
数独前身为“九宫格”,最早起源于中国。
数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。
中国古籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。
而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。
现在已有多种手机装有数独游戏。
1783年,瑞士数学家莱昂哈德·欧拉发明了一种当时称作“拉丁方块”(LatinSquare)的游戏,这个游戏是一个n×n的数字方阵,每一行和每一列都是由不重复的n个数字或者字母组成的。
19世纪70年代,美国的一家数学逻辑游戏杂志《戴尔铅笔字谜和词语游戏》(DellPuzzleMαgαzines)开始刊登现在称为“数独”的这种游戏,当时人们称之为“数字拼图”(NumberPlace),在这个时候,9×9的81格数字游戏才开始成型。
填充完整后
1984年4月,在日本游戏杂志《字谜通讯Nikoil》(《パズル通信ニコリ》)上出现了“数独”游戏,提出了“独立的数字”的概念,意思就是“这个数字只能出现一次”或者“这个数字必须是唯一的”,并将这个游戏命名为“数独”(sudoku)。
一位前任香港高等法院的新西兰籍法官高乐德(WayneGould)在1997年3月到日本东京旅游时,无意中发现了。
他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。
从此,这个游戏开始风靡全球。
后来更因数独的流行衍生了许多类似的数学智力拼图游戏,例如:
数和、杀手数独。
中国大陆是在2007年2月28日正式引入数独.2007年2月28日,北京晚报智力休闲数独俱乐部(数独联盟sudokufederation前身)在新闻大厦举行加入世界谜题联合会的颁证仪式,会上谜题联合会秘书长皮特-里米斯特和俱乐部会长在证书上签字,这标志着北京晚报智力休闲俱乐部成为世界谜题联合会的39个成员之一,这也标志着俱乐部走向国际舞台,它将给数独爱好者带来更多与世界数独爱好者们交流的机会。
数独书籍是现在非小说类畅销书榜首!
元素构成
数独基本元素示意图
单元格:
数独中最小的单元,标准数独中共有81个
行:
横向9个单元格的集合
列:
纵向9个单元格的集合
宫:
粗黑线划分的区域,标准数独中为3×3的9个单元格的集合
已知数:
数独初始盘面给出的数字
候选数:
每个空单元格中可以填入的数字。
规则
标准数独的规则为:
数独每行、每列及每宫填入数字1-9且不能重复。
基本解法举例
数独解法全是由规则衍生出来的,基本解法分为两类思路,一类为直观法,一类为候选数法。
更复杂的解法,最终也会归结到这两大类中。
下边以图示简单介绍几种解法,只要你花几分钟看一遍,马上就可以开始做数独了。
基础摒除法
基础摒除法就是利用1~9的数字在每一行、每一列、每一宫都只能出现一次的规则进行解题的方法。
基础摒除法可以分为行摒除、列摒除、九宫格摒除。
实际寻找解的过程为:
寻找九宫格摒除解:
找到了某数在某一个九宫格可填入的位置只余一个的情形;意即找到了该数在该九宫格中的填入位置。
寻找列摒除解:
找到了某数在某列可填入的位置只余一个的情形;意即找到了该数在该列中的填入位置。
寻找行摒除解:
找到了某数在某行可填入的位置只余一个的情形;意即找到了该数在该行中的填入位置。
基础摒除法的提升方法是区块摒除法,是直观法中使用频率最高的方法之一。
基础摒除法是直观法中最常用的方法,也是在平常解决数独谜题时使用最频繁的方法。
单元排除法使用得当的话,甚至可以单独处理中等难度的谜题。
使用单元排除法的目的就是要在某一单元(即行,列或区块)中找到能填入某一数字的唯一位置,换句话说,就是把单元中其他的空白位置都排除掉。
那么要如何排除其余的空格呢?
当然还是不能忘了游戏规则,由于1-9的数字在每一行、每一列、每一个九宫格都要出现且只能出现一次,所以:
如果某行中已经有了某一数字,则该行中的其他位置不可能再出现这一数字
如果某列中已经有了某一数字,则该列中的其他位置不可能再出现这一数字
如果某区块中已经有了某一数字,则该区块中的其他位置不可能再出现这一数字。
唯一解法
如果某行已填数字的单元格达到8个,那么该行剩余单元格能填的数字就只剩下那个还没出现过的数字;同理,如果某列已填数字的单元格达到8个,那么该列剩余单元格能填的数字就只剩下那个还没出现过的数字;如果某九宫格已填数字的单元格达到8个,那么该九宫格剩余单元格能填的数字就只剩下那个还没出现过的数字。
这应该算是直观法中最简单的方法了。
基本上只需要看谜题,推理分析一概都用不上,这是因为要使用它所需满足的条件十分明显。
同样,也正是因为它简单,所以只能处理很简单的谜题,或是在处理较复杂谜题的后期才用得上。
唯余解法
唯余解法就是某宫格可以添入的数已经排除了8个,那么这个宫格的数字就只能添入那个没有出现的数字.
唯余解法是直观法中较不常用的方法。
虽然它很容易被理解,然而在实践中,却不易看出能够使用这个方法的条件是否得以满足,从而使这个方法的应用受到限制。
与唯一解法相比,唯余解法是确定某个单元格能填什么数的方法,而唯一解法是确定某个数能填在哪个单元格的方法。
另外,应用唯一解法的条件十分简单,几乎一目了然。
区块摒除法
区块摒除法是基础摒除法的提升方法,是直观法中使用频率最高的方法之一.区块摒除法是直观法中进阶的技法。
虽然它的应用范围不如基础摒除法那样广泛,但用它可能找到用基础摒除法无法找到的解。
有时在遇到困难无法继续时,只要用一次区块摒除法,接下去解题就会势如破竹了。
当某数字在某个九宫格中可填入的位置正好都在同一行上,因为该九宫格中必须要有该数字,所以这一行中不在该九宫格内的单元格上将不能再出现该数字。
当某数字在某个九宫格中可填入的位置正好都在同一列上,因为该九宫格中必须要有该数字,所以这一列中不在该九宫格内的单元格上将不能再出现该数字。
当某数字在某行中可填入的位置正好都在同一九宫格上,因为该行中必须要有该数字,所以该九宫格中不在该行内的单元格上将不能再出现该数字。
当某数字在某列中可填入的位置正好都在同一九宫格上,因为该列中必须要有该数字,所以该九宫格中不在该列内的单元格上将不能再出现该数字。
区块摒除法实际上是利用区块与行或列之间的关系来实现的,这一点与基础摒除法颇为相似。
然而,它实际上是一种模糊排除法,也就是说,它并不象基础摒除法那样利用谜题中现有的确定数字对行,列或九宫格进行排除,而是在不确定数字的具体位置的情况下进行排除的。
余数测试法
所谓余数测试法就是在某行或列,九宫格所填数字比较多,剩余2个或3个时,在剩余宫格添入值进行测试的解题方法.
唯一候选数法
唯一候选数法是候选数删减法中最简单的一种方法,就是通览所有单元格的候选数列表,如果哪个单元格中只剩下一个候选数,就可应用唯一候选数法,在该单元格中填入这个数字,并在相应行,列和九宫格的其它单元格候选数列表中删除该数字。
隐性唯一候选数法
顾名思义,隐式唯一候选数法也是唯一候选数法的一种,但它不如显式唯一候选数法那样显而易见。
当某个数字在某一列各宫格的候选数中只出现一次时,那么这个数字就是这一列的唯一候选数了.这个宫格的值就可以确定为该数字.这是因为,按照数独游戏的规则要求每一列都应该包含数字1~9,而其它宫格的候选数都不含有该数,则该数不可能出现在其它的宫格,那么就只能出现在这个宫格了.对于唯一候选数出现行,九宫格的情况,处理方法完全相同。
由于1-9这9个数字要在每行、每列和每个九宫格内至少出现一次,所以如果某个数字在某行、某列或是某个九宫格内所有单元格的候选数列表中只出现一次,那么这个数字就应该填入它出现的那个单元格内,并且从该格所在行、所在列和所在九宫格内其它单元格的候选数列表中删除该数字。
候选数区块删减法
候选数区块删减法也是比较常用的方法,它的目的是尽量删减候选数,而不一定要生成某一单元格的唯一解(当然,产生唯一解更好)。
候选数区块删减法是利用九宫格中的候选数和行或列上的候选数之间的交互影响而实现的一种删减方法。
在某一九宫格中,当所有可能出现某个数字的单元格都位于同一行时,就可以把这个数字从该行的其他单元格的候选数中删除
在某一九宫格中,当所有可能出现某个数字的单元格都位于同一列时,就可以把这个数字从该列的其他单元格的候选数中删除
在某一行(列)中,当所有可能出现某个数字的单元格都位于同一九宫格中时,就可以把这个数字从该九宫格的其他单元格的候选数中删除。
候选数对删减法
选数对删减法依据的原理是数字1-9在同一行、同一列和同一九宫格内不能出现2次或2次以上。
这样,如果在同一行、同一列和同一九宫格内两个单元格的候选数列表都是{a,b},那么如果其中一个单元格填入的数字为a,另一个单元格填入的数字就应该是b;反之,如果其中一个单元格填入的数字为b,另一个单元格填入的数字就应该是a。
也就是说,a,b两个数字就应该分别填入这两个单元格,所以该行、该列或是该九宫格内其它单元格就不应该再填入数字a和b。
所以候选数对删减法就是:
在一个行、列或九宫格中,如果有两个单元格都包含且只包含相同的两个候选数,则这两个候选数字应该从该行、该列列或该九宫格的其他单元格的候选数列表中删去。
隐性候选数对删减法
隐性候选数对删减法依据的原理是数字1-9在同一行、同一列和同一九宫格内至少要出现一次。
这样,如果某两个数字a和b在同一行、同一列和同一九宫格内只在两个单元格的候选数列表中出现,那么该行、该列或是该九宫格内其它单元格就不应该再填入数字a和b,所以a和b只能在这两个单元格中出现,所以这两个单元格的候选数列表就都应该是{a,b},可以将其他的数字从这两个单元格的候选数列表中删去。
所以隐性候选数对删减法就是:
在同一行,列或区块中,如果一个数对(两个数字)正好只出现且都出现在两个单元格中,则这两个单元格的候选数中的其他数字可以被删除。
三数集删减法
三数集删减法的原理类似于候选数对删减法。
候选数对删减法要求同样的2个数字都出现在某行、列或九宫格的2个单元格中,且这2个单元格的候选数不能包含其他的数字。
同样,三数集删减法要求的是3个数字要出现在3个位于同一行、列或九宫格的单元格中,且这3个单元格的候选数中不能包含其他数字。
但不同的是,三数集删减法不要求每个单元格中都要包含这3个数字。
例如,对于数字集{2,4,5},如果在某行,列或区块中有3个单元格的候选数分别为下面几种情况时,都可应用三数集删减法:
{2,4,5}、{2,4,5}、{2,4,5}
{2,4}、{4,5}、{2,5}
{2,4,5}、{2,5}、{4,5}
{2,4,5}、{4,5}、{2,4,5}
也就是说,要形成三数集,则必须要有3个在同一行、列或九宫格中的单元格,每个单元格中至少要有2个候选数,且它们的所有候选数字也正好都是一个三数集的子集。
这个三数集中的3个数字只能填入这3个单元格中,所以该行、列或九宫格中其他的单元格中不可能再填入这3个数字。
但要注意的是,{2,4,5}、{2,4}、{2,4}这种情况不是三数集。
其中{2,4}和{2,4}可应用候选数对删减法,所以第一个候选数列表{2,4,5}将只能剩下候选数5,这时就可应用唯一候选数法了。
[1]
三链数删减法
找出某一列、某一行或某一个九宫格中的某三个宫格候选数中,相异的数字不超过3个的情形,进而将这3个数字自其它宫格的候选数中删减掉的方法就叫做三链数删减法。
隐性三链数删减法
在某行,存在三个数字出现在相同的宫格内,在本行的其它宫格均不包含这三个数字,我们称这个数对是隐形三链数.那么这三个宫格的候选数中的其它数字都可以排除.
当隐形三链数出现在列,九宫格,处理方法是完全相同的.
修改为:
在某行,存在三个候选数字分别出现在三个宫格内,
在本行的其它宫格均不包含这三个数字,我们称这个数对是隐形三链数.那么这三个宫格的其它候选数都可以排除.
当隐形三链数出现在列,九宫格,处理方法是完全相同的
或者:
利用“找出某3个数字仅出现在某行、某列或某一个九宫格的某三个宫格候选数中的情形,进而将这三个宫格的候选数删减成该3个数字”的方法就叫做隐性三链数删减法(HiddenTriples)。
矩形顶点删减法
矩形顶点删减法和直观法讲到的矩形摒除法分析方法是一样的。
矩形顶点删减法在识别时比较不容易找到,所以最好先使用其它的方法。
三链列删减法
三链列删减法是矩形顶点删减法的扩展,如果不清楚矩形顶点删减法,可以参考矩形顶点删减法,以便于更容易理解本节内容。
利用“找出某个数字在某三列仅出现在相同三行的情形,进而将该数字自这三行其他宫格候选数中删减掉”;或“找出某个数字在某三行仅出现在相同三列的情形,进而将该数字自这三列其他宫格候选数中删减掉”的方法就叫做三链列删减法。
关键数删减法
在进入到解题后期,利用前面讲到的唯一候选数法、隐性唯一候选数法、区块删减法、数对删减法、隐性数对删减法、三链数删减法、隐性三链数删减法、矩形顶点删减法、三链列删减法都无法有进展的时候,可以考虑使用关键数删减法。
关键数删减法就是在后期找到一个数,这个数在行(或列,九宫格)仅出现两次的数字。
我们假定这个数在其中一个宫格类,继续求解,如果发生错误,则确定我们的假设错误。
如果继续求解仍然出现困难,不妨假设这个数在另外一个宫格,看能不能得到错误。
这就是关键数删减法.
排除法
当某一列,某一行或某一宫里已填7个数字时,可采用排除法,排除不可能出现在这个格子的数,从而确定格子里应该填什么数。
比如某一行已填1,3,4,5,7,8,9,还剩2,6,而其中一个空格所在的列上已有了2,可知这个空格里不可能是2,那么另外一个空格里一定是2,那么这个空格里一定是6。
当某一列,某一行或某一宫里已填6个数字时,也可采用排除法。
变形数独概述
数独发展到今天,类型已经多种多样,如果按不同条件细分绝不下百种,而且数量还在增加中。
大家平时可以常见的变形数独,如:
对角线数独、锯齿数独、杀手数独等等。
对角线数独
锯齿数独
杀手数独
所谓变形数独,即改变一些标准数独的条件或规则,形成的新型数独题目,有的变形数独也会同时具备多种变形条件,变形条件如下:
1.使用数字的数量不同可以有4字数独、6字数独、16字数独、25字数独等等
2.增加限制区域的类别可以有对角线数独、额外区域数独、彩虹数独等等
3.宫形发生变化有锯齿数独;多个数独叠加起来有连体数独、武士数独、超级数独等等
4.用其它元素代替已知数字有字母数独、骰子数独、数码数独等等
5.利用单元格内数字之和或乘积等关系有杀手数独、边框数独、魔方数独、算式数独等等
6.利用相邻单元格内数字的关系有连续数独、不等号数独、堡垒数独、XV数独、黑白点数独等等
7.单元格限制数字属性有奇偶数独、大中小数独等等
8.利用数独外提示数字有边缘观测数独、摩天楼数独等等
9.按禁止同一数字位置有无缘数独、无马数独等等
10.非方形数独有圆环数独、立方体数独、六角数独、蜂窝数独等等
11.需要多个数独条件配合才能解题的有三合一数独、双胞数独等等。
以上11种分类并非全部变化条件,只是常见的大类,还有不少变形数独未举例,其实变形的条件不会有极限的,只要你有想象力,可以创造出属于你自己的新型变形数独。
虽然数独条件变换多端,但有一条始终不变的绝对条件——同一限制区域内不能出现重复数字。
只要符合这个条件,就没有脱离“数独”的范畴。
靶形数独
Noip2009赛题
Noip2009提高组复赛最后一题:
靶形数独。
靶形数独
(sudoku.pas/dpr/c/cpp)
考察搜索顺序优化,预处理出所有结点的决策,卡时搜索方法。
问题描述
小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低。
但普通的数独对他们来说都过于简单了,于是他们向Z博士请教,Z博士拿出了他最近发明的“靶形数独”,作为这两个孩子比试的题目。
靶形数独的方格同普通数独一样,在9格宽×9格高的大九宫格中有9个3格宽×3格高的小九宫格(用粗黑色线隔开的)。
在这个大九宫格中,有一些数字是已知的,根据这些数字,利用逻辑推理,在其他的空格上填入1到9的数字。
每个数字在每个小九宫格内不能重复出现,每个数字在每行、每列也不能重复出现。
但靶形数独有一点和普通数独不同,即每一个方格都有一个分值,而且如同一个靶子一样,离中心越近则分值越高。
上图具体的分值分布是:
最里面一格(黄色区域)为10分,黄色区域外面的一圈(红色区域)每个格子为9分,再外面一圈(蓝色区域)每个格子为8分,蓝色区域外面一圈(棕色区域)每个格子为7分,最外面一圈(白色区域)每个格子为6分,如上图所示。
比赛的要求是:
每个人必须完成一个给定的数独(每个给定数独可能有不同的填法),而且要争取更高的总分数。
而这个总分数即每个方格上的分值和完成这个数独时填在相应格上的数字的乘积的总和。
如图,在以下的这个已经填完数字的靶形数独游戏中,总分数为2829。
游戏规定,将以总分数的高低决出胜负。
由于求胜心切,小城找到了善于编程的你,让你帮他求出,对于给定的靶形数独,能够得到的最高分数。
输入数据
一共9行。
每行9个整数(每个数都在0—9的范围内),表示一个尚未填满的数独方格,未填的空格用“0”表示。
每两个数字之间用一个空格隔开。
输出数据
输出可以得到的靶形数独的最高分数。
如果这个数独无解,则输出整数-1。
样例输入
700900001
100005900
000200080
005020003
000000648
413000000
007002090
201060804
080504012
样例输出
2829
数据规模
40%的数据,数独中非0数的个数不少于30。
80%的数据,数独中非0数的个数不少于26。
100%的数据,数独中非0数的个数不少于24。
解题报告
首先进行最原始的数独搜索,我们可以开3个标记数组
heng,shu,box:
array[0..9,0..9]ofboolean;
我们每次就填入数字可以进行如下判断
if(heng[x,i]=false)and(shu[y,i]=false)and(box[((x-1)div3)*3+((y-1)div3)+1,i]=false)then
这次的数据我们倒的搜索要比正的搜索效率高
对于完全不加优化的程序期望分值为70分
如果加上卡时间的操作,期望得分95分
如果随机化搜索顺序,期望得分100分
如果加入启发函数信息,期望得分100分
代码清单(pascal实现)
programsudoku;
constvalue:
array[1..9,1..9]ofinteger=((6,6,6,6,6,6,6,6,6),
(6,7,7,7,7,7,7,7,6),
(6,7,8,8,8,8,8,7,6),
(6,7,8,9,9,9,8,7,6),
(6,7,8,9,10,9,8,7,6),
(6,7,8,9,9,9,8,7,6),
(6,7,8,8,8,8,8,7,6),
(6,7,7,7,7,7,7,7,6),
(6,6,6,6,6,6,6,6,6));
typenode=record
juece:
array[0..9]ofinteger;
square,lie,hang:
integer;
end;
varway:
array[1..81]ofnode;
temp:
node;
find:
boolean;
i,j,k,w,point,bestpoint:
integer;
square,lie,hang:
array[1..9,1..9]ofboolean;
map:
array[1..9,1..9]ofinteger;
functionfs(i,j:
integer):
integer;
begin
if(i<=3)and(j<=3)thenfs:
=1;
if(i<=3)and(j>=4)and(j<=6)thenfs:
=2;
if(i<=3)and(j>=7)thenfs:
=3;
if(i>=4)and(i<=6)and(j<=3)thenfs:
=4;
if(i>=4)and(i<=6)and(j>=4)and(j<=6)thenfs:
=5;
if(i>=4)and(i<=6)and(j>=7)thenfs:
=6;
if(i>=7)and(j<=3)thenfs:
=7;
if(i>=7)and(j>=4)and(j<=6)thenfs:
=8;
if(i>=7)and(j>=7)thenfs:
=9;
end;
proceduresearch(i:
integer);
vark:
integer;
begin
ifi=82then
begin
ifpoint>bestpointthenbestpoint:
=point;
find:
=true;
exi
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九宫 格数独共 30