初中数学知识总结大全 第十三章 图形的初步认识 编辑靳军强.docx
- 文档编号:10630077
- 上传时间:2023-02-22
- 格式:DOCX
- 页数:20
- 大小:109.98KB
初中数学知识总结大全 第十三章 图形的初步认识 编辑靳军强.docx
《初中数学知识总结大全 第十三章 图形的初步认识 编辑靳军强.docx》由会员分享,可在线阅读,更多相关《初中数学知识总结大全 第十三章 图形的初步认识 编辑靳军强.docx(20页珍藏版)》请在冰豆网上搜索。
初中数学知识总结大全第十三章图形的初步认识编辑靳军强
第十三章图形的基本认识
一、几何图形与点、线、面、体
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:
有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:
有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:
线和线相交的地方是点,它是几何图形中最基本的图形。
线:
面和面相交的地方是线,分为直线和曲线。
面:
包围着体的是面,分为平面和曲面。
体:
几何体也简称体。
(2)点动成线,线动成面,面动成体。
二、直线、射线和线段
1、直线的概念
一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
2、射线的概念
直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
3、线段的概念
直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:
(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
5、直线的性质
(1)直线公理:
经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:
过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
6、线段的性质
(1)线段公理:
所有连接两点的线中,线段最短。
也可简单说成:
两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
7、线段垂直平分线的性质定理及逆定理
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:
线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三、角
1、角的相关概念
有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
或:
角也可以看成是一条射线绕着它的端点旋转而成的。
2、平角和周角:
一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
3、余角与补角
(1)、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
(2)、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
(3)、余角和补角的性质:
同角或等角的余角相等,同角或等角的补角相等。
4、相交线中的角
(1)相交线中的角
两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。
我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做邻补角。
邻补角互补,对顶角相等。
直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。
(2)对顶角
(1)、两条直线相交成四个角,其中不相邻的两个角是对顶角。
(2)、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
(3)、对顶角的性质:
对顶角相等。
5、角的表示
角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:
用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
6、角的度量
角的度量有如下规定:
把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’=60”
7、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
8、角的平分线及其性质
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:
(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
四、相交线
1、相交线(见本节相交线的角)
2、垂线
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:
性质1:
过一点有且只有一条直线与已知直线垂直。
性质2:
直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:
垂线段最短。
五、平行线
1、平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:
相交或平行。
注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论
平行公理:
经过直线外一点,有且只有一条直线与这条直线平行。
推论:
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定
平行线的判定公理:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:
同位角相等,两直线平行。
平行线的两条判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:
内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:
同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
六、比例线段
(1)有关概念
1、比:
选用同一长度单位量得两条线段。
a、b的长度分别是m、n,那么就说这两条线段的比是a:
b=m:
n(或
)
2、比的前项,比的后项:
两条线段的比a:
b中。
a叫做比的前项,b叫做比的后项。
说明:
求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:
两个比相等的式子叫做比例,如
4、比例外项:
在比例
(或a:
b=c:
d)中a、d叫做比例外项。
5、比例内项:
在比例
(或a:
b=c:
d)中b、c叫做比例内项。
6、第四比例项:
在比例
(或a:
b=c:
d)中,d叫a、b、c的第四比例项。
7、比例中项:
如果比例中两个比例内项相等,即比例为
(或a:
b=b:
c时,我们把b叫做a和d的比例中项。
8.比例线段:
对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即
(或a:
b=c:
d),那么,这四条线段叫做成比例线段,简称比例线段。
(注意:
在求线段比时,线段单位要统一,单位不统一应先化成同一单位)
(2)比例性质
1.基本性质:
(两外项的积等于两内项积)
2.反比性质:
(把比的前项、后项交换)
3.更比性质(交换比例的内项或外项):
4.合比性质:
(分子加(减)分母,分母不变)
.
注意:
实际上,比例的合比性质可扩展为:
比例式中等号左右两个比的前项,后项之间
发生同样和差变化比例仍成立.如:
.
5.等比性质:
(分子分母分别相加,比值不变.)
如果
,那么
.
注意:
(1)此性质的证明运用了“设
法”,这种方法是有关比例计算,变形中一种常用方法.
(2)应用等比性质时,要考虑到分母是否为零.
(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
七、平行线分线段成比例定理:
1.平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比.
例.已知l1∥l2∥l3,
ADl1
BEl2
CFl3
可得
2.推论:
平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.
(1)是“A”字型
(2)是“8”字型
经常考,关键在于找
由DE∥BC可得:
.此推论较原定理应用更加广泛,条件是平行.
3.推论的逆定理:
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.(即利用比例式证平行线)
4.定理:
平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.
5.平行线等分线段定理:
三条平行线截两条直线,如果在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。
八、三角形一边平行线的有关定理与推论
(1)、三角形一边的平行线性质定理
定理:
平行于三角形一边的直线截其他两边所得的线段对应成比例。
几何语言∵△ABE中BD∥CE
∴
简记:
归纳:
和
推广:
类似地还可以得到
和
(2)、三角形一边的平行线性质定理推论
平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.
(3)、三角形一边的平行线的判定定理
三角形一边平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
三角形一边的平行线判定定理推论如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
九、黄金分割
1)
定义:
如图1在线段AB上,点C把线段AB分成两条线段AC和BC(AC>BC),如果
,即AC2=AB×BC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。
其中
≈0.618
。
2)黄金分割的几何作图:
已知:
线段AB.求作:
点C使C是线段AB的黄金分割点.
作法:
①过点B作BD⊥AB,使
;
②连结AD,在DA上截取DE=DB;
③在AB上截取AC=AE,则点C就是所求作的线段AB的黄金分割点.黄金分割的比值为:
.(只要求记住)
3)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形。
十、命题、公理、定理、证明
1、命题的概念
判断一件事情的语句,叫做命题。
理解:
命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
假命题(错误的命题)
所谓正确的命题就是:
如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:
如果题设成立,不能证明结论总是成立的命题。
3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理
用推理的方法判断为正确的命题叫做定理。
5、证明
判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
十一、投影与视图
1、投影
投影的定义:
用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:
由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:
由同一点发出的光线所形成的投影称为中心投影。
2、视图
当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
主视图:
在正面内得到的由前向后观察物体的视图,叫做主视图。
俯视图:
在水平面内得到的由上向下观察物体的视图,叫做俯视图。
左视图:
在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
3、正方体的平面展开图:
11种
4、棱柱的其有关概念:
棱:
在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:
相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
十二、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质
(1)、平移前后两个图形是全等图形。
(2)、对应点连线平行且相等,对应线段平行且相等,对应角相等。
十三、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
(1)、旋转前后两个图形是全等图形。
(2)、对应点到旋转中心的距离相等。
(3)、对应点与旋转中心的连线所成的角等于旋转角。
十四、轴对称、轴对称图形与中心对称
轴对称
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
轴对称与轴对称图形的区别
轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.
中心对称
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
十五、轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.
轴对称变换的性质
(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样
(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.
(3)连接任意一对对应点的线段被对称轴垂直平分.
作一个图形关于某条直线的轴对称图形
(1)作出一些关键点或特殊点的对称点.
(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.
十六、关于坐标轴对称
点P(x,y)关于x轴对称的点的坐标是(x,-y)
点P(x,y)关于y轴对称的点的坐标是(-x,y)
关于原点对称
点P(x,y)关于原点对称的点的坐标是(-x,-y)
关于坐标轴夹角平分线对称
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)
关于平行于坐标轴的直线对称
点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);
点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);
坐标系中对称点的特征
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
十七、镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向;
2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:
(1)利用镜子照(注意镜子的位置摆放);
(2)利用轴对称性质;
(3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面;(5)根据前面的结论在头脑中想象。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学知识总结大全 第十三章 图形的初步认识 编辑靳军强 初中 数学知识 总结 大全 第十三 图形 初步 认识 编辑 靳军强