最新八年级上册数学复习知识点总结+人教版名师优秀教案.docx
- 文档编号:10501983
- 上传时间:2023-02-14
- 格式:DOCX
- 页数:14
- 大小:21.85KB
最新八年级上册数学复习知识点总结+人教版名师优秀教案.docx
《最新八年级上册数学复习知识点总结+人教版名师优秀教案.docx》由会员分享,可在线阅读,更多相关《最新八年级上册数学复习知识点总结+人教版名师优秀教案.docx(14页珍藏版)》请在冰豆网上搜索。
最新八年级上册数学复习知识点总结+人教版名师优秀教案
八年级上册数学复习知识点总结(人教版)
1全等三角形的对应边、对应角相等
2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5边边边公理(SSS)有三边对应相等的两个三角形全等
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的平分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的平分线上
9角的平分线是到角的两边距离相等的所有点的集合
10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21推论1等腰三角形顶角的平分线平分底边并且垂直于底边
22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23推论3等边三角形的各角都相等,并且每一个角都等于60?
24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25推论1三个角都相等的三角形是等边三角形
26推论2有一个角等于60?
的等腰三角形是等边三角形
27在直角三角形中,如果一个锐角等于30?
那么它所对的直角边等于斜边的一半
28直角三角形斜边上的中线等于斜边上的一半
29定理线段垂直平分线上的点和这条线段两个端点的距离相等
30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32定理1关于某条直线对称的两个图形是全等形
33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平
分线
34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图35逆定理
形关于这条直线对称
36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
37勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
38定理四边形的内角和等于360?
39四边形的外角和等于360?
40多边形内角和定理n边形的内角的和等于(n-2)×180?
41推论任意多边的外角和等于360?
42平行四边形性质定理1平行四边形的对角相等
43平行四边形性质定理2平行四边形的对边相等
44推论夹在两条平行线间的平行线段相等
45平行四边形性质定理3平行四边形的对角线互相平分
46平行四边形判定定理1两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3对角线互相平分的四边形是平行四边形
49平行四边形判定定理4一组对边平行相等的四边形是平行四边形
50矩形性质定理1矩形的四个角都是直角
51矩形性质定理2矩形的对角线相等
52矩形判定定理1有三个角是直角的四边形是矩形
53矩形判定定理2对角线相等的平行四边形是矩形
54菱形性质定理1菱形的四条边都相等
55菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)?
2
57菱形判定定理1四边都相等的四边形是菱形
58菱形判定定理2对角线互相垂直的平行四边形是菱形
59正方形性质定理1正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1关于中心对称的两个图形是全等的
62定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
64等腰梯形性质定理等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
69推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
70推论2经过三角形一边的中点与另一边平行的直线,必平分第
三边
71三角形中位线定理三角形的中位线平行于第三边,并且等于它
的一半
72梯形中位线定理梯形的中位线平行于两底,并且等于两底和的
一半L=(a+b)?
2S=L×h
73
(1)比例的基本性质如果a:
b=c:
d,那么ad=bc
如果ad=bc,那么a:
b=c:
d
74
(2)合比性质如果a,b=c,d,那么(a?
b),b=(c?
d),d
75(3)等比性质如果a,b=c,d=…=m,n(b+d+…+n?
0),那么
(b+d+…+n)=a,b(a+c+…+m),
76平行线分线段成比例定理三条平行线截两条直线,所得的对应
线段成比例
77推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
78定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
79平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
80定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
81相似三角形判定定理1两角对应相等,两三角形相似(ASA)
82直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
83判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
84判定定理3三边对应成比例,两三角形相似(SSS)
85定理如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
86性质定理1相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
87性质定理2相似三角形周长的比等于相似比
88性质定理3相似三角形面积的比等于相似比的平方
89任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
91圆是定点的距离等于定长的点的集合
92圆的内部可以看作是圆心的距离小于半径的点的集合
93圆的外部可以看作是圆心的距离大于半径的点的集合
94同圆或等圆的半径相等
95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
97到已知角的两边距离相等的点的轨迹,是这个角的平分线
98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
99定理不在同一直线上的三点确定一个圆。
100垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
101推论1?
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
?
弦的垂直平分线经过圆心,并且平分弦所对的两条弧
?
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
102推论2圆的两条平行弦所夹的弧相等
103圆是以圆心为对称中心的中心对称图形
104定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
105推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
106定理一条弧所对的圆周角等于它所对的圆心角的一半
107推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
108推论2半圆(或直径)所对的圆周角是直角;90?
的圆周角所
对的弦是直径
109推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
圆的内接四边形的对角互补,并且任何一个外角都等于它110定理
的内对角
111?
直线L和?
O相交d,r
?
直线L和?
O相切d=r
?
直线L和?
O相离d,r
112切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
113切线的性质定理圆的切线垂直于经过切点的半径
114推论1经过圆心且垂直于切线的直线必经过切点
115推论2经过切点且垂直于切线的直线必经过圆心
116切线长定理从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
117圆的外切四边形的两组对边的和相等
118弦切角定理弦切角等于它所夹的弧对的圆周角
119推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
120相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积
相等
121推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
122切割线定理从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
123推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
124如果两个圆相切,那么切点一定在连心线上
125?
两圆外离d,R+r?
两圆外切d=R+r
?
两圆相交R-r,d,R+r(R,r)
?
两圆内切d=R-r(R,r)?
两圆内含d,R-r(R,r)
126定理相交两圆的连心线垂直平分两圆的公共弦
127定理把圆分成n(n?
3):
?
依次连结各分点所得的多边形是这个圆的内接正n边形
?
经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
128定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
129正n边形的每个内角都等于(n-2)×180?
n
130定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
131正n边形的面积Sn=pnrn,2p表示正n边形的周长
132正三角形面积?
3a,4a表示边长
133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360?
,因此k×(n-2)180?
n=360?
化为(n-2)(k-2)=4
134弧长计算公式:
L=n兀R,180
135扇形面积公式:
S扇形=n兀R,360=LR,2
136内公切线长=d-(R-r)外公切线长=d-(R+r)
例题:
1、一次函数:
若两个变量x,y存在关系为y=kx+b(k?
0,k,b为常数)的形式,则称y是x的函数。
注意:
(1)k?
0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:
一次函数的图象是一条直线
(1)两个常有的特殊点:
与y轴交于(0,b);与x轴交于(-,0)。
(2)正比例函数y=kx(k?
0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k?
0)的图象是经过(-,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:
y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:
(2)增减性:
gt;0时,y随x增大而增大;k&
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:
?
根据题给条件写出含有待定系数的解析式;?
将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;?
解方程,得到待定系数的具体数值;?
将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:
已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
解:
?
y=2y1
y1=3x+2,
?
y=2(3x+2)=6x+4,
即变量y与x的关系为:
y=6x+4。
例2、解答下列题目
(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)
(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6(那么该正比例函数应为()。
(A)(B)(C)(D)
(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是()。
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
分析与答案:
(1)直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2)求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。
答案D:
y=-2x。
(3)由一次函数y=kx+b的图象性质,有以下结论:
,
题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和
y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。
答案:
D。
例3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。
设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围B(20,600);
乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。
因此图象如右图所示,由图象可知:
第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。
例5(直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:
直线y=kx+b的位置由系数k、b来决定:
由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。
例如y=2x,y=2x+3
解:
?
y=kx+b与y=5-4x平行,的图象平行。
?
k=-4,
?
y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
,?
b=18
?
y=-4x+18。
说明:
一次函数y=kx+b图象的位置由系数k、b来决定:
由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。
例6(直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。
解:
?
点B到x轴的距离为2,
?
点B的坐标为(0,?
2),
设直线的解析式为y=kx?
2,
?
直线过点A(-4,0),
?
0=-4k?
2,
解得:
k=?
?
直线AB的解析式为y=x+2或y=-x-2。
说明:
此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。
(1)图象是直线的函数是一次函数;
(2)直线与y轴交于B点,则点B(0,yB);
(3)点B到x轴距离为2,则|yB|=2;
(4)点B的纵坐标等于直线解析式的常数项,即b=yB;
(5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB;
下面只需待定k即可。
三、提高与思考
例1(已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3-)xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
解:
依题意,得
,解得n=-1
?
y1=-3x-1,
5、能掌握一些常见的数量关系和应用题的解答方法,逐步提高解答应用题的能力。
y2=(3-)x,y2是正比例函数;
y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小;
176.18—6.24期末总复习y2=(3-)x的图象经过第一、三象限,y2随x的增大而增大。
(1)三角形的外接圆:
经过一个三角形三个顶点的圆叫做这个三角形的外接圆.说明:
由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
(1)二次函数y=ax2的图象:
是一条顶点在原点且关于y轴对称的抛物线。
是二次函数的特例,此时常数b=c=0.例2(已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,?
AOB的面积为6平方单位,求正比例函数和一次函数的解析式。
分析:
自画草图如下:
(5)直角三角形的内切圆半径解:
设正比例函数y=kx,
2、100以内的进位加法和退位减法。
一次函数y=ax+b,
?
点B在第三象限,横坐标为-2,
7、课堂上多设计一些力所能及的问题,让他们回答,并逐步提高要求。
设B(-2,yB),其中yB<0,
|a|的越小,抛物线的开口程度越大,越远离对称轴y轴,y随x增长(或下降)速度越慢。
?
=6,
?
AO•|yB|=6,
?
yB=-2,
②点在圆内<===>d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 年级 上册 数学 复习 知识点 总结 人教版 名师 优秀 教案