刀具的刃磨.docx
- 文档编号:10481992
- 上传时间:2023-02-13
- 格式:DOCX
- 页数:24
- 大小:58.19KB
刀具的刃磨.docx
《刀具的刃磨.docx》由会员分享,可在线阅读,更多相关《刀具的刃磨.docx(24页珍藏版)》请在冰豆网上搜索。
刀具的刃磨
刀具的刃磨
我想请教一下,刀具在刃磨的时候分几步磨削?
加工的光洁度和刀具的刃磨后角有关系吗?
在磨削修光刃的时候应该注意一些什么?
在机械磨中,刀具修刃用什么结合剂的砂轮?
砂轮的粒度是多少?
?
问题答案
1、刃磨工艺的选择
切削刀具刃磨的目的之一是获取性价比高的切削刃口质量,而质量好坏的关键在于刃磨砂轮粒度的选择。
砂轮粒度越细,切削刃崩口越小,而磨削效率越低。
为此可根据刀具切削刃的精度、用途(见表1)或其失效程度(见表2),将PCD切削刀具刃磨工艺分为粗、精、细三个加工阶段。
根据具体情况制订合理刃磨工艺可大幅度提高加工效率。
表1按切削刃的精度、用途分类
序号
切刃精度
可选刃磨砂轮粒度
用途
a粗
0.05mm
230/270#~320/400#
粗加工
b精
0.02mm
M20~M40
半精加工
c细
0.005mm
M5~M10
精加工
表2按刀刃失效程度分类(重磨刀具)
序号
失效程度
可选刃磨砂轮粒度
备注
a粗
切刃破损 0.5mm
230/270#~320/400#
或电加工
b精
切刃崩口 0.3mm
M20~M40
c细
切刃磨损 0.1mm
M5~M10
粗加工对刃口要求不高,可选电加工或磨削加工。
电加工效率高,宜用于加工复杂刀具,如印刷电路板用钻头、切削强化木地板用成型铣刀等。
磨削加工时可选粗粒度砂轮,刃磨时接触面积大、磨削力高(300~400N),可快速去除多余的加工余量;细加工时选用细粒度砂轮,刃磨时接触面积小、磨削力低(100~200N)、磨削发热量少,但材料去除率低。
此阶段主要是通过研磨和抛光,进一步改善切削刃口质量。
精加工居于二者之中。
2、刃磨工艺要点
(1)主轴精度要好,一般砂轮端面跳动应≤0.02mm。
砂轮端面跳动过大,磨削时砂轮断续冲击切削刃,容易使切削刃发生崩口,难以获得高精度切削刃。
(2)砂轮应具有良好的动平衡。
砂轮的不平衡将导致机床的振动,进而影响被加工刀具的刃口质量和加工精度。
(3)刃磨砂轮应优先选用陶瓷结合剂金刚石砂轮。
因为在磨削过程中陶瓷结合剂易发生微裂使磨粒得到更新自锐,使磨削过程平稳,有利于提高加工表面的精度和效率;次之可选耐热性较高的树脂结合剂金刚石砂轮。
(4)适时注意砂轮开刃,且开刃油石粒度要合适。
用金刚石砂轮加工PCD刀具时,砂轮会发生堵塞、钝化、高温和快速磨损,导致加工速度降低和振纹、噪音、烧伤的产生。
通常选择比所用砂轮粒度细1~2号的软碳化硅油石作为开刃油石。
(5)因金刚石易与铁系合金发生化学扩散,加速砂轮磨损,因此应尽可能避免同时磨削金属与PCD。
(6)砂轮回转方向务必从刀具前刀面向后刀面回转。
从磨削时PCD刀具切削刃的受力可知,当砂轮从刀具前刀面向后刀面回转时,其磨削力(切向与法向力之和)作用于切削刃向内,即刀具受压应力,不易崩刀;反之则为拉应力,切削刃易崩口。
若因刀具结构原因必须反转刃磨时,则选用树脂结合剂砂轮优于金属和陶瓷结合剂砂轮。
(7)为了保证切削刃质量同时提高刃磨效率,可将刀具的后角分为大后角和小后角。
用粗粒度砂轮先磨大后角,因接触面大磨削力大,刃磨效率高;然后用细粒度砂轮刃磨小后角,将小后角的刃带宽度控制在0.1~0.3mm左右,接触面小,刃磨质量好。
(8)尽可能在一次装夹中完成对刀具切削刃的加工。
(9)PCD刃磨冷却液应优选水基磨削液。
由于PCD材料硬度高且耐热性差,水基磨削液冷却效果优于油基磨削液,可提高加工效率和刃口质量。
另外磨削过程中冷却要充分,不能断流,避免因磨削液量小或断续供给造成金刚石(砂轮、刀具)的大量消耗(氧化、石墨化)和刀具的刃口破损。
聚晶金刚石刀具刃磨工艺
聚晶金刚石(PCD)是将粒度为微米级的金刚石微粉与少量金属粉末(如CO)混合后在高温(1400℃)、高压(6000MPa)下烧结而成的聚晶体。
与其它刀具材料相比,聚晶金刚石具有如下性能特点:
1极高的硬度和耐磨性;
2高导热性和低热膨胀系数,切削时散热快,切削温度低,热变形小;
3摩擦系数小,可降低加工表面粗糙度。
但由于聚晶金刚石与铁族元素有很强亲和力,因此不适合加工黑色金属及其合金。
PCD刀具在有色金属及其合金、非金属材料的高速切削中体现出优良的切削性能,因此已广泛应用于汽车、航空、航天、建材等工业领域。
但是,PCD的高硬度、高耐磨性使刀具的刃磨相当困难,主要体现在材料磨除率小、砂轮损耗大、刃磨效率低、刃口呈锯齿状。
PCD刀具刃磨技术
PCD刀具的主要刃磨工艺有放电刃磨、金刚石砂轮机械刃磨、电解刃磨等,其中放电刃磨和金刚石砂轮机械刃磨在技术上已较为成熟,下面对这两种刃磨方法作一综合分析。
放电刃磨(EDG)
电火花放电加工技术(EDM)(特别是电火花线切割和放电磨削)已广泛应用于刀具制造。
电火花放电加工技术用于刃磨PCD刀具称为放电刃磨(EDG)。
(1)刃磨机理
放电刃磨原理与传统的磨料磨削原理有根本区别,也不同于电解刃磨原理(既有磨料机械作用又有电化学作用)。
放电刃磨是通过在电介质分离的砂轮电极与刀具电极间放电产生瞬时高温,将刀具材料熔化和气化。
刃磨PCD刀具时,由于金刚石不导电,所以刀具电极即为PCD中的金属相构成的导电网络,由此可见,放电刃磨是一种热蚀加工过程。
由于电火花放电的温度可高达8000~12000℃,因此PCD刀具刃磨时可能引起热损和石墨化,尤其在PCD与硬质合金基底的界面处侵蚀速度更快,可在表面形成深约0.05mm的微裂纹,这是放电刃磨加工方法的主要缺陷。
由于放电刃磨是一种非接触刃磨过程,磨削力小到可忽略不计,故刃磨效率很高。
R.Wyss等人在一定实验条件下得到的磨除率达4mm3/min,磨耗比为0.2mm3/mm3;而V.Baar等人在实验中则得到了1.0mm3/mm3的磨耗比。
(2)刃磨设备
放电刃磨时,通常采用碳氢化合物(如石蜡)作为砂轮电极与工具电极间的电介质,工作电压一般为直流80~200V,砂轮电极采用铜、钨、石墨等导电材料。
根据刀具刃磨时的位置,放电刃磨可分为圆周放电刃磨和端面放电刃磨。
刃磨过程中,砂轮作旋转运动,使其能均匀磨损。
在端面放电刃磨中,砂轮还需左右摆动。
脉冲电源是影响刃磨效率和刃磨质量的关键设备,因此脉冲电源的设计已成为放电刃磨的研究热点。
(3)研究成果
国外学者对PCD刀具的放电刃磨技术开展了大量试验研究,其中英国伯明翰大学的T.B.Thoe等人的研究成果较具代表性。
他们的试验在伯明翰大学机械学院研制的EDG机床上进行。
用于刃磨的PCD样品牌号为SynditeCTB002、010、025和Compax1500、1600。
通过试验得出如下结论:
①对于细晶粒PCD样品,端面放电刃磨可获得较好刃口质量;对于粗晶粒PCD样品,圆周放电刃磨可获得较好刃口质量。
②增大电流、电压或脉冲宽度,可增大磨除率,提高刃磨效率,但同时会导致PCD刀具表面产生更深、更宽的裂纹。
③细晶粒PCD样品容易引起放电,砂轮电极磨损量小,放电中脱落的晶粒平均尺寸等于晶粒本身的尺寸,因此可获得较好的刃磨质量。
④粗晶粒PCD样品与硬质合金交界面的侵蚀程度较大。
脉冲电源及刃磨工艺步骤对PCD放电刃磨的质量有较大影响。
德国学者E.Beck等人对此作了大量试验研究。
他们在VollmerQR20P专用火花放电工具磨床上分别采用普通型和改进型两种脉冲电源对PCD放电刃磨质量进行了对比试验研究,试验采用硅基合成油作为电介质,以石墨作为砂轮电极(负极),主轴转速为500r/min,样品材料去除量为0.5mm。
此外,在Microspark200通用火花放电磨床上进行了刃磨工艺步骤对PCD刃磨质量影响的试验研究,试验采用刃磨PCD专用脉冲电源,并根据磨除量及刃磨后的刃口粗糙度将脉冲电源设置为5级;试验样品牌号为SynditeCTC002、CTB002、CTB010、CTB025,每种粒度PCD各取4件样品,试验中采用不同脉冲电源设置组合(即不同工艺步骤)进行刃磨,然后测量刃口及刀面粗糙度。
通过试验得出如下结论:
①脉冲电源的设计及可控性对刃磨质量可起到决定性作用,对比试验结果表明,配备改进型脉冲电源的工具磨床刃磨出的PCD样品的刃口及刀面粗糙度均接近金刚石砂轮机械刃磨的质量。
②通过调节脉冲电源的设置进行多级刃磨,并合理分配每级磨除量比例及刃磨时间,可获得较高的刃磨质量。
金刚石砂轮机械刃磨
金刚石砂轮机械刃磨是目前使用最广泛的PCD刀具刃磨方法,与放电刃磨相比,其刃磨效率较低(磨除率约为1.5mm3/min)、加工成本较高(磨耗比约为0.02min3/min3),但可获得良好的刀具刃口质量和完整光洁的前、后刀面。
(1)刃磨机理
金刚石砂轮机械刃磨PCD刀具的机理比较复杂,国内外学者对此进行了大量研究,目前主要存在以下几种观点:
①德国学者M.Kenter认为,金刚石砂轮磨削PCD刀具的过程中发生了刻划作用和滑动作用,材料的去除方式主要为粘结、刻划、摩擦化学反应和表面断裂。
用扫描电子显微镜(SEM)观察3种被刃磨工件PCD-1(粒度2μm)、PCD-2(粒度10μm)和PCD-3(粒度25μm)的表面微观形貌时,在PCD-1上可观察到犁沟,而在其它两种PCD工件上观察不到犁沟。
因此Kenter认为:
在绝大多数情况下,PCD材料的去除是以摩擦化学反应和表面断裂为主。
随着磨削的进行,金刚石磨粒逐渐钝化,即使在PCD-1上也不易观察到犁沟。
由于PCD材料脆性大,在金刚石磨粒的挤压下容易诱发裂纹,裂纹在机械和热应力作用下扩展,最终导致小片PCD材料剥落,同时摩擦热会使PCD发生石墨化和其它摩擦化学反应。
②GE公司的K.J.Dunn等人用扫描电子显微镜对刃磨后的PCD复合片的表面微观形貌进行观察后认为,PCD材料的破坏机理主要为微观脆性破碎和疲劳破损。
③我国艾兴院士等人用开槽的金刚石砂轮磨削PCD,同时用超声波振动和激光照射来模拟磨削时的机械冲击和热冲击,根据试验结果,将PCD材料的去除方式归纳如下:
当砂轮与PCD接触的瞬间,磨削力突然增大,剧烈的机械冲击使PCD表面产生裂纹,甚至有碎片产生。
在稳定磨削期,砂轮磨粒在PCD表面上进行挤压和摩擦,当压力达到一定程度,PCD表面上会形成裂纹;当摩擦温度达到一定程度,PCD会发生石墨化和其它化学反应。
通过实验发现,用开槽的金刚石砂轮进行磨削时,由于磨削力不连续,加之冷却液的周期冷却作用,有利于裂纹扩展,从而使开槽砂轮比非开槽砂轮的磨削效率高1~2倍。
(2)刃磨设备
PCD材料的特性决定了对PCD刀具刃磨机床的要求不同于普通工具磨床,即:
①要求砂轮主轴及机床整体具有很高的刚性和稳定性,以保持刃磨时砂轮对PCD材料的恒定压力。
②砂轮架可作横向摆动,以保证砂轮端面磨损均匀;砂轮架的摆动频率和摆动幅度可调。
③机床上应配置光学投影装置和高精度回转工作台。
④应采用专用金刚石砂轮。
(3)研究成果
德国学者M.Kenter通过试验,研究了金刚石砂轮机械刃磨PCD的工艺参数对磨除率、磨耗比的影响。
由于PCD刀具刃磨为恒定压力磨削,因此M.Kenter采用磨除率和磨耗比作为试验评价标准。
根据试验结果得出如下结论:
①为使杯状金刚石砂轮径向磨损均匀,应使砂轮与刀具的重合度≥1,通过调节刃磨机床砂轮摆动架的摆幅和频率可达到这一要求。
②分别增大砂轮旋转速度VC、恒定压力FA和PCD粒度,磨除率和磨耗比均随之增大。
由于这三个工艺参数对磨除率和磨耗比影响程度最大,因此可通过改变其大小来提高刃磨效率,降低刃磨成本。
③砂轮粒度、金刚石浓度、结合剂种类、冷却液浓度等均对磨除率和磨耗比有一定影响。
研究方向
PCD刀具的放电刃磨和金刚石砂轮机械刃磨技术目前仍不完善,今后的主要研究方向有以下几点:
①刃磨后的PCD刀具刃口质量及表面质量较差是放电刃磨工艺存在的突出问题;而金刚石砂轮机械刃磨工艺的主要缺点则是PCD刀具刃磨效率低、刃磨成本高。
为解决这些关键问题,需要对影响刃磨质量、刃磨效率、刃磨成本的关键参数建立数学模型,深入研究工艺要素的作用机理及相互关系,通过对工艺参数进行综合优化,改善刃磨工艺系统的性能。
②针对主要PCD产品的刃磨工艺进行计算机辅助设计。
③从理论上进一步深入研究PCD刃磨机理,以指导实用刃磨工艺的开发与完善。
根据PCD材料的特性,对现有刃磨工艺方法进行复合研究,探索行之有效的新型刃磨工艺。
随着PCD刀具应用领域的不断扩展,对PCD刀具刃磨工艺的研究显得日益重要,而此项研究的成果也必将有力推动PCD刀具的发展和推广应用。
车刀的刃磨简介
车刀(指整体车刀与焊接车刀)用钝后重新刃磨是在砂轮机上刃磨的。
磨高速钢车刀用氧化铝砂轮(白色),磨硬质合金刀头用碳化硅砂轮(绿色)。
1.砂轮的选择
砂轮的特性由磨料、粒度、硬度、结合剂和组织5个因素决定。
1)磨料,常用的磨料有氧化物系、碳化物系和高硬磨料系3种。
船上和工厂常用的是氧化铝砂轮和碳化硅砂轮。
氧化铝砂轮磨粒硬度低(HV2000-HV2400)、韧性大,适用刃磨高速钢车刀,其中白色的叫做白刚玉,灰褐色的叫做棕刚玉。
碳化硅砂轮的磨粒硬度比氧化铝砂轮的磨粒高(Hv2800以上)。
性脆而锋利,并且具有良好的导热性和导电性,适用刃磨硬质合金。
其中常用的是黑色和绿色的碳化硅砂轮。
而绿色的碳化硅砂轮更适合刃磨硬质合金车刀。
2)粒度:
粒度表示磨粒大小的程度。
以磨粒能通过每英寸长度上多少个孔眼的数字作为表示符号。
例如60粒度是指磨粒刚可通过每英寸长度上有60个孔眼的筛网。
因此,数字越大则表示磨粒越细。
粗磨车刀应选磨粒号数小的砂轮,精磨车刀应选号数大(即磨粒细)的砂轮。
船上常用的粒度为46号—60号的中软或中硬的砂轮。
3)硬度:
砂轮的硬度是反映磨粒在磨削力作用下,从砂轮表面上脱落的难易程度。
砂轮硬,即表面磨粒难以脱落;砂轮软,表示磨粒容易脱落。
砂轮的软硬和磨粒的软硬是两个不同的概念,必须区分清楚。
刃磨高速钢车刀和硬质合金车刀时应选软或中软的砂轮.
另外,在选择砂轮时还应考虑砂轮的结合剂和组织。
船上和工厂一般选用陶瓷结合剂(代号A)和中等组织的砂轮。
综上所述,我们应根据刀具材料正确选用砂轮。
刃磨高速钢车刀时,应选用粒度为46号到60号的软或中软的氧化铝砂轮。
刃磨硬质合金车刀时,应选用粒度为60号到80号的软或中软的碳化硅砂轮,两者不能搞错
车刀刃磨的步骤如下:
磨主后刀面,同时磨出主偏角及主后角,如上图a)所示;
磨副后刀面,同时磨出副偏角及副后角,如上图b)所示;
磨前面,同时磨出前角,如上图c)所示;
修磨各刀面及刀尖,如上图d)所示。
3.刃磨车刀的姿势及方法是:
(1)人站立在砂轮机的侧面,以防砂轮碎裂时,碎片飞出伤人;
(2)两手握刀的距离放开,两肘夹紧腰部,以减小磨刀时的抖动;
(3)磨刀时,车刀要放在砂轮的水平中心,刀尖略向上翘约3°~8°,车刀接触砂轮后应作左右方向水平移动。
当车刀离开砂轮时,车刀需向上抬起,以防磨好的刀刃被砂轮碰伤;
(4)磨后刀面时,刀杆尾部向左偏过一个主偏角的角度;磨副后刀面时,刀杆尾部向右偏过一个副偏角的角度;(5)修磨刀尖圆弧时,通常以左手握车刀前端为支点,用右手转动车刀的尾部。
4.磨刀安全知识
1)刃磨刀具前,应首先检查砂轮有无裂纹,砂轮轴螺母是否拧紧,并经试转后使用,以免砂轮碎裂或飞出伤人。
2)刃磨刀具不能用力过大,否则会使手打滑而触及砂轮面,造成工伤事故。
3)磨刀时应戴防护眼镜,以免砂砾和铁屑飞入眼中。
4)磨刀时不要正对砂轮的旋转方向站立,以防意外。
5)磨小刀头时,必须把小刀头装入刀杆上。
6)砂轮支架与砂轮的间隙不得大于3mm,入发现过大,应调整适当。
天然单晶金刚石刀具的刃磨特点
超精密加工中,单晶金刚石刀具的两个基本精度是刀刃轮廓精度和刃口的钝圆半径。
要求加工非球面透镜用的圆弧刀具刃口的圆度为0.05μm以下,加工多面体反射镜用的刀刃直线度为0.02μm;刀具刃口的钝圆半径(ρ值)表示了刀具刃口的锋利程度,为了适应各种加工要求,刀刃刃口半径范围从20nm~1μm。
高精度焊接式双刃PCD刀具刃磨技术
随着PCD、CBN等超硬材料刀具在汽车、摩托车、空调压缩机、木材加工等行业的广泛应用,对此类刀具的市场需求日益增加。
目前国内已有约20家企业从事超硬刀具的开发、加工与刃磨,但其中大部分厂家都局限于低端产品(如精度要求不高的刀片装夹式超硬刀具等)的加工,导致此类产品市场竞争激烈。
而一些高端产品(如高精度焊接式PCD刀具等)却因为技术要求高、加工难度大而少有厂家问津,产品仍主要依靠进口。
据统计,2001年上海大众汽车有限公司的2VQS发动机生产线消耗的进口高精度焊接式PCD刀具费用已超过100万元人民币(Passat、Polo车型的发动机加工刀具费用尚未统计在内)。
一汽大众的2VQS发动机生产线与上海大众基本相同,对此类刀具的消耗量也很大,再加上全国其它汽车、摩托车制造厂及相关行业的刀具消耗,可见对于高精度焊接式PCD刀具有着巨大的市场需求。
为降低生产成本,企业迫切希望实现此类刀具的国产化加工与刃磨。
1.高精度焊接式PCD刀具技术要求
高精度焊接式PCD刀具的技术要求较高。
刀柄采用HSK接柄或安装在HSK液压夹头中的直柄;PCD刀具长度小于150mm,直径在50mm以内,刀刃直径公差为0.003mm,精度等级IT2~IT3,IT3精度的同轴度公差为0.003mm。
焊接式PCD刀具刃口与刀柄的同轴度误差由磨削加工误差和刀具安装误差综合而成,要将其控制在0.003mm范围内相当困难。
为了保证0.003mm的刀具外径公差,对加工机床和磨削工艺方法的加工精度也提出了很高要求。
此外,为了实现高精度焊接式PCD刀具的准确测量,要求测量仪器的综合测量精度达到微米级,且作用于刀具刃口的测量力应控制在150mN以内。
2.高精度PCD刀具磨床
现以远山机械股份有限公司生产的FC-500D型PCD&CBN刀具磨床为例,简要介绍高精度PCD刀具磨床的结构特点与加工性能。
(1)机床特点
FC-500D型PCD&CBN刀具磨床的砂轮行程为500mm,可满足长度为150mm刀具的磨削行程要求。
利用机床的旋转工作台及其转角显示功能,可实现刀具刃口1:
1000~1:
1500的倒锥磨削要求。
砂轮座和工作台导轨均采用瑞士SchneeBerger高精度滚柱线性导轨。
工作台进给方式为气压柔性进给,手柄每格进给量为1μm(显示器显示)。
刃磨时砂轮与刀具的接触压力可调。
磨头高度位置可调,可磨削大直径PCD锯片铣刀。
磨床上配置了高精度摄像系统(CCD),可通过屏幕清晰显示刀具刃磨加工情况(放大倍率15~120倍),同时可通过显示器屏幕检测刀具刃口圆弧(可测最小圆弧R0.05mm)。
(2)分度工作头
为实现高精度PCD刀具的精密刃磨,磨床上设计了可微调角度的分度工作头。
该工作头采用SK40主轴内孔和蜗轮蜗杆副传动的主轴微调机构。
当蜗杆与蜗轮脱开时,主轴可实现快速转动。
24等分的分度盘与主轴可空套或联锁。
固定在夹具体上的插销可插入分度盘缺口内,使分度盘与主轴在圆周上定位固定(此时分度盘与主轴处于联锁状态)。
24等分分度盘适用于加工2、3、4、6、8等分的刀具,如需加工5、7等分的刀具,则需改用20等分或28等分的分度盘。
(3)变径套
由于分度工作头采用SK40主轴内孔,因此加工HSK柄部的刀具时,必须利用变径套才能将刀具固定在工作头主轴内孔中(加工直柄刀具时,也可先将刀具装在HSK柄的液压直柄夹具中,然后通过变径套装入工作头主轴内孔中)。
由于主轴内孔和变径套均存在同轴度误差,因此为满足刀具加工的同轴度要求(0.003mm),采用了国外开发的可调中心变径套新技术。
该变径套结构由两部分组成,左边为SK40部分,可安装到分度工作头主轴内孔中;右边为HSK部分,可与刀具的HSK柄部联接。
左、右两部分之间采用轴、孔定位联接,由四个内六角螺钉固定。
轴与孔之间为间隙配合,配合间隙即为中心调整范围。
轴上有四个小平面。
左、右两部分轴线的同轴度偏差由正对小平面的内六角紧定螺钉调整,轴线的平行度由紧定螺钉调整。
变径套调整好后,应在SK40柄部和与之配合的分度工作头SK40内孔的圆周上作出标记,以确定变径套安装位置,避免重新安装变径套时重复调整同轴度。
(4)刀具在线测量装置
笔者与有关单位合作研制的高精度PCD刀具在线测量装置安装在机床工作台的侧面并可随工作台一起移动,它与安装在工作台上分度工作头中的刀具相对位置保持不变。
测量装置的立柱可上、下移动,将测量头部件调整至与刀具中心等高。
立柱还可作180°回转,当测量装置不工作时,可使测量头部件远离刀具。
立柱的顶部装有十字拖板,测量不同长度刀具时,纵向小拖板可沿刀具轴线方向移动(行程可达150mm);横向小拖板可沿刀具径向移动(行程可达50mm)。
测量不同直径刀具时,测量头部件的径向位置可调。
测量臂安装在十字拖板上,测量头部件安装在测量臂上。
测量刀具直径时,测量头部件的轴线必须与刀具轴线垂直,否则测量结果将大于刀具实际直径,为此,在测量头部件上方安装了可沿垂直轴线回转的微调装置,以保证测量头轴线与刀具轴线垂直。
测量头部件由支架、弓形臂、固定测量头、光栅尺和移动测量头组成。
固定测量头安装在弓形臂上,移动测量头安装在光栅尺上,光栅尺可在支架上移动。
固定测量头和移动测量头采用行程为3~5mm的测量光栅,光栅尺的测量行程则为50mm,光栅测量精度均为1μm。
该测量装置可测量PCD刀具的直径和圆跳动,测量力小于150mN。
测量时,首先移动光栅尺使移动测量头与固定测量头接触并置零,然后打开移动测量头(以不接触刀具为准);转动分度工作头使刀具刃口略低于水平面,调整轴向小拖板使被测刃口部位处于两个测量头之间,锁紧轴向小拖板;调整径向小拖板使固定测量头与刀具接触约1mm(可通过显示器观察);移动光栅尺使移动测量头与刀具接触,锁紧径向小拖板,调整微调机构直至显示器显示的直径尺寸最小(即测量头轴线与刀具轴线垂直);缓慢转动刀具,使刀刃与固定测量头接触,当测量头触测到刀具容屑槽时,测量装置记录到的最大值即为刀具直径尺寸,此时显示器显示出刀具直径值和固定测量头的最大读数值。
然后将刀具转过180°,按相同方法再测量一次(此时可退出移动测量头),固定测量头又可测得一个最大值,两次测量值之差即为刀具刃口圆跳动量。
测量刀具刃口圆跳动时,整个测量系统在两次测量过程中不应发生位移或振动,否则将影响测量结果的准确性。
如测量系统刚度不够,测量值波动较大,也可采用另一方法测量圆跳动,即将测量头固定在磁性表座上,磁性表座安装在机床床身上,分别测量刀具的两个刃口,也可测出刀具的圆跳动量。
3.PCD刀具的精密刃磨工艺
国外有关研究文献指出,高精度PCD刀具的刃磨加工不能采用先磨外圆再磨后角的传统刃磨方法,因为这种刃磨方法易导致刀具刃口崩刃,且加工同轴度难以保证。
对于小直径PCD刀具,其刀杆中心孔在加工PCD刀片的刀片槽时已被破坏,因此也无法采用传统方法刃磨外圆。
为保证PCD刀具外圆和同轴度的加工精度,必须采用单边修整法进行刃磨加工。
现以挺杆孔刀具78-33C-205026的加工为例,说明高精度PCD刀具磨床刃磨工艺步骤。
将待加工刀具装入变径套,然后装入可微调角度的分度工作头中。
注意:
刀柄、变径套和分度工作头内孔必须擦拭干净,否则难以保证安装同轴度。
(2)调整安装同轴度
将千分表置于刀具的调整环A和B上,调
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 刀具