全国高考理科数学试题及答案北京卷.docx
- 文档编号:10246969
- 上传时间:2023-02-09
- 格式:DOCX
- 页数:9
- 大小:524.07KB
全国高考理科数学试题及答案北京卷.docx
《全国高考理科数学试题及答案北京卷.docx》由会员分享,可在线阅读,更多相关《全国高考理科数学试题及答案北京卷.docx(9页珍藏版)》请在冰豆网上搜索。
全国高考理科数学试题及答案北京卷
2016年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
(1)已知集合A=B=,则
(A)(B)
(C)(D)
(2)若x,y满足,则2x+y的最大值为
(A)0(B)3
(C)4(D)5
(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为
(A)1
(B)2
(C)3
(D)4
(4)设a,b是向量,则“IaI=IbI”是“Ia+bI=Ia-bI”的
(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
(5)已知x,yR,且xyo,则
(A)-(B)
(C)(-0(D)lnx+lny
(6)某三棱锥的三视图如图所示,则该三棱锥的体积为
(A)
(B)
(C)
(D)1
(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则
(A)t=,s的最小值为(B)t=,s的最小值为
(C)t=,s的最小值为(D)t=,s的最小值为
(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则
(A)乙盒中黑球不多于丙盒中黑球
(B)乙盒中红球与丙盒中黑球一样多
(C)乙盒中红球不多于丙盒中红球
(D)乙盒中黑球与丙盒中红球一样多
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
(9)设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________。
(10)在的展开式中,的系数为__________________.(用数字作答)
(11)在极坐标系中,直线与圆交于A,B两点,则=____________________.
(12)已知为等差数列,为其前n项和,若,,则.
(13)双曲线的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点。
若正方形OABC的边长为2,则a=_______________.
(14)设函数
若a=0,则f(x)的最大值为____________________;
若f(x)无最大值,则实数a的取值范围是_________________。
三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)
(15)(本小题13分)
在
ABC中,
(I)求
的大小
(II)求
的最大值
(16)(本小题13分)A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:
小时);
A班
66.577.58
B班
6789101112
C班
34.567.5910.51213.5
(
)试估计C班的学生人数;
(
)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(
)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:
小时),这3个新数据与表格中的数据构成的新样本的平均数记,表格中数据的平均数记为,试判断和的大小,(结论不要求证明)
(17)(本小题14分)
如图,在四棱锥P-ABCD中,平面PAD
平面ABCD,PA
PD,PA=PD,AB
AD,AB=1,AD=2,AC=CD=
(I)求证:
PD
平面PAB;
(II)求直线PB与平面PCD所成角的正弦值;
(III)在棱PA上是否存在点M,使得BMll平面PCD?
若存在,求
的值;若不存在,说明理由。
(18)(本小题13分)
设函数f(x)=xe
+bx,曲线y=f(x)dhko(2,f
(2))处的切线方程为y=(e-1)x+4,
(I)求a,b的值;
(II)求f(x)的单调区间。
(19)(本小题14分)
已知椭圆C:
(a>b>0)的离心率为
,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(I)求椭圆C的方程;
(II)设P的椭圆C上一点,直线PA与Y轴交于点M,直线PB与x轴交于点N。
求证:
lANl
lBMl为定值。
(20)(本小题13分)
设数列A:
,
…
(N≥2)。
如果对小于n(2≤n≤N)的每个正整数k都有
<
,则称n是数列A的一个“G时刻”。
记“G(A)是数列A的所有“G时刻”组成的集合。
(I)对数列A:
-2,2,-1,1,3,写出G(A)的所有元素;
(II)证明:
若数列A中存在
使得
>
,则G(A)
;
(III)证明:
若数列A满足
-
≤1(n=2,3,…,N),则G(A)的元素个数不小于
-
。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 高考 理科 数学试题 答案 北京