钙离子肾上腺素乙酰胆碱对离体蛙心活动有何影响.docx
- 文档编号:10091951
- 上传时间:2023-02-08
- 格式:DOCX
- 页数:9
- 大小:21.61KB
钙离子肾上腺素乙酰胆碱对离体蛙心活动有何影响.docx
《钙离子肾上腺素乙酰胆碱对离体蛙心活动有何影响.docx》由会员分享,可在线阅读,更多相关《钙离子肾上腺素乙酰胆碱对离体蛙心活动有何影响.docx(9页珍藏版)》请在冰豆网上搜索。
钙离子肾上腺素乙酰胆碱对离体蛙心活动有何影响
钙离子、肾上腺素、乙酰胆碱对离体蛙心活动有何影响?
为什么?
高钙可见蛙心收缩力增强,但舒张不完全,以致收缩基线上移.在钙离子浓度较高的情况下,心脏会停止在收缩状态,称为“钙僵”.
心肌的舒缩活动与心肌肌浆中的钙离子浓度的高低有关.心肌肌浆网不发达,储钙能力差,易受细胞外钙离子浓度高低影响,当钙离子浓度升高至10-5M水平时,作为钙受体的肌钙蛋白结合了足够的钙离子,这就引起肌钙蛋白分子构型的改变,从而触发肌丝滑行,肌纤维收缩.当肌浆中钙离子浓度降至10-7M时,钙离子与肌钙蛋白解离,心肌随之舒张.用高钙任氏液灌注蛙心,使得肌浆中的钙离子浓度不断升高,钙离子与肌钙蛋白结合数量不断增加,甚至达到只结合不解离的程度,于是,心肌出现钙僵.
滴加肾上腺素后,可见蛙心收缩增强,心脏舒张完全,心博曲线幅度明显增大.因为肾上腺素使心肌收缩能力增强.机理为肾上腺素与心肌细胞膜上的β受体结合,提高心肌细胞和肌浆网膜钙离子通透性,导致肌浆中钙离子浓度增高,使心肌收缩增强.另外,肾上腺素还有降低肌钙蛋白与钙离子亲和力,促使肌钙蛋白对钙离子的释放速率增加;提高肌浆网膜摄取钙离子的速度,刺激钠-钙离子的交换,使复极期向细胞外排出钙离子的作用加速.这样,使心肌舒张速度增快,整个舒张过程明显加强.
滴加乙酰胆碱后,可见蛙心收缩减弱,收缩曲线基线下移,心率减慢.最后,心跳停止于舒张阶段,出现类似高钾时的变化.因为乙酰胆碱使心肌的收缩能力减弱.机理为乙酰胆碱与心肌细胞M受体结合,一方面提高心肌细胞膜钾离子通道的通透性,促使钾离子外流,将引起
(1)窦房结细胞复极时钾离子外流增多,最大复极电位绝对值增大;IK衰减过程减弱,自动除极速度减慢.这两方面因素导致窦房结自律性降低,心率减慢.
(2)复极过程中钾离子外流增加,动作电位2、3期缩短,钙离子进入细胞内减少,使心肌收缩力减弱;另一方面乙酰胆碱可直接抑制钙离子通道,减少钙离子内流,使心肌细胞收缩减弱.
综述
钙离子是机体各项生理活动不可缺少的离子。
它对于维持细胞膜两侧的
钙离子碱性还原棒生物电位,维持正常的神经传导功能。
维持正常的肌肉伸缩与舒张功能以及神经-肌肉传导功能,还有一些激素的作用机制均通过钙离子表现出来。
它的主要生理功能均是基于以上的基本细胞功能,主要有以下几点:
1.钙离子是凝血因子,参与凝血过程;
2.参与肌肉(包括骨骼肌、平滑肌)收缩过程;
3.参与神经递质合成与释放、激素合成与分泌;
4.是骨骼构成的重要物质。
其中几个重要作用的产生机制如下:
钙离子传导神经信号
机制:
促进神经递质分泌。
当第一个细胞兴奋时,产生了一个电冲动,此时,细胞外的钙离子流入该细胞内,促使该细胞分泌神经递质,神经递质与相邻的下一级神经细胞膜上的蛋白分子结合,促使这一级神经细胞产生新的电冲动。
以此类推,神经信号便一级一级地传递下去,从而构成复杂的信号体系,乃至最终出现学习、记忆等大脑的高级功能。
当机体缺钙时,神经递质的释放受到阻隔,人体的兴奋机制和抑制机制遭到破坏。
如果是儿童缺钙,会夜啼、夜惊、烦躁失眠,严重的导致大脑发育障碍,出现反应迟钝、多动、学习困难等症,影响大脑成熟和智力。
钙离子让心脏跳动
机制:
带正电的钙离子,让细胞内外发生电位差。
带正电的钙离子,穿过细胞膜,进入心肌细胞,因为细胞内外的钙浓度相差较大,形成较大电位差,产生了刺激细胞膜收缩的生理效应。
心肌细胞收缩,又将钙离子给泵出了细胞膜外,形成反向的电位差,心肌细胞膜在这种反向电位差的作用下,开始舒张;舒张后,细胞膜的通透性增强,钙离子再次穿过细胞膜进入心肌细胞,再次引起心肌收缩,如此往复,心脏就有节律地跳动起来。
钙离子传递御敌信号
机制:
外来抗原激活T细胞受体,启动了钙离子介导的信号通路,促使免疫细胞分化和生长。
当病菌、细菌、毒物等外来入侵者侵入人体时,是钙离子首先发出预
钙离子水机警信号;随后钙离子又发出入侵者有何特性的信号,免疫系统随之组织相应的免疫细胞,捕获和吞噬敌人。
一旦钙缺乏,就会发生免疫系统功能下降、紊乱,引发疾病。
如:
自身免疫性疾病红斑狼疮、风湿病;皮肤病:
皮炎、痤疮等。
补钙,对治疗这些病有重要作用,反证了钙的功能。
钙离子调节酶的活性
机制:
细胞内的钙调节蛋白与钙离子结合,形成的一种复合物,可激活体内多种酶的活性。
如果皮肤被割伤了,流血了,钙离子立刻发出信号,逐级激活凝血酶,启动凝血机制,以止血。
食物中的营养要靠酶的分解,才能被人体吸收,而蛋白酶、脂肪酶、淀粉酶、ATP酶等多种酶和激素,要靠钙离子的作用,才会充满活性,因此营养学有“补钙,是补充一切营养的根源”的说法。
钙离子调控生殖细胞的成熟和受精
机制:
精子DNA的最前端,是一个由钙组成的顶体。
精子携带的DNA的最前端是一个由钙组成的顶体,正是这个钙顶体使精子在到达卵细胞边缘时,破坏和穿透卵细胞的内层膜,受精的一瞬间就这样发生了。
同时由钙组成的波状物环绕着卵细胞,这被称为钙振荡。
钙振荡起到了激活卵子的作用,使卵子获得受精能力,一个生命的孕育从此开始了。
因此,钙若不充足,直接影响人的性功能和精子的活力,导致不育。
近期研究发现,钙参与着更广泛的生理过程,如细胞兴奋性的控制、细胞代谢、细胞形态的维持、细胞周期的调控等。
钙离子可以激活信号转导相关的酶类
1、钙离子在细胞中的分布具有明显的区域特征
细胞外液游离的钙浓度远高于细胞内钙浓度,而细胞内的钙离子则有90%以上储存于细胞内钙库(内质网和线粒体内),胞质内的钙浓度很低。
如果细胞质膜或细胞内钙库的钙离子通道开启,可引起胞外钙的内流或细胞内钙库的钙释放,使胞质内钙离子浓度急剧升高。
而钙离子进入胞质后,又可再经细胞质膜及钙库膜上的钙泵(钙离子-ATP酶)返回细胞外或细胞内钙库,维持细胞质内的低钙状态。
2、钙离子的下游信号转导分子是钙调蛋白
钙调蛋白(calmodulin,CaM)是一种钙结合蛋白,分子中有4个结构域,每个结构域可结合1个钙离子。
胞质中钙离子浓度低时,钙调蛋白不易结合钙离子;随着胞质中钙离子浓度增高,钙调蛋白可结合不同数量的钙离子,形成不同构像的钙离子/钙调蛋白复合物。
钙调蛋白本身无活性,形成钙离子/钙调蛋白复合物后具有调节功能,可调节钙调蛋白依赖性蛋白激酶的活性。
3、钙调蛋白不是钙离子的唯一靶分子
除了钙调蛋白,钙离子还结合PKC、AC和cAMP-PDE等多种信号转导分子,通过变构效应激活这些分子
钙离子补钙事项编辑钙离子补钙从孕前开始
骨钙:
胎儿期,首先形成了一个骨化中心,即由软组织(骨胶原)构成的骨骺,胎盘输送来的钙等营养物质不断地在骨骺上沉积,胎儿出生时,小胳膊等骨头已基本形成,只是硬度不够罢了。
婴儿出生,从食物中摄取的钙等营养物质,继续在骨骺上沉积,形成“羟磷灰石”。
此时,新骨100%地更新旧骨,并不断地伸长、硬化,需要大量的钙。
血钙:
胎龄25周至生后6个月内,是大脑皮层各种神经元、神经胶质、神经纤维发育的激增期,神经细胞生长速度极快。
2岁后细胞增殖速度减慢、体积增大。
孕妇补钙要从孕前开始,如果孕妇缺钙,可使胎儿脑细胞分裂减慢,胶质细胞数目减少,严重者神经元数目亦少,智能发育迟缓。
钙离子青年时争取较高骨峰值
骨钙:
我们的骨头里有成骨细胞和破骨细胞。
在婴儿-青年期,成骨细胞的活性远远大于破骨细胞,让骨头在正常的新陈代谢过程中,新骨的生成,远远大于旧骨。
到30岁时,人的骨峰值达到高峰。
如果这一阶段钙摄入量充足,获取了一个较高的骨峰值,以后即使发生退行性的骨丢失,也不容易骨质疏松。
已经证实,青少年时期缺乏运动,将严重影响到骨密度和骨矿含量的储备。
钙离子通道血钙:
现在学生学习紧张,如果给高度用脑的学生,尤其是那些有过于紧张、失眠、情绪失控等应考综合征的学生,补充足够的钙,增强神经组织的传导能力和收缩性,可使他们在学习时注意力高度集中、提高效率;在休息时能充分休息、彻底放松,保持良好、高效的学习状态。
钙离子中老年减缓骨丢失速度
骨钙:
30-40岁,成骨细胞和破骨细胞活性相当,维持着高骨峰值的水平;40岁后,破骨细胞活性大于成骨细胞。
但是,生命中后期尽管不能增加骨密度,如果钙摄入量充足,至少能保持已有的骨密度并且增加骨矿含量。
血钙:
缺钙,神经调节能力下降,可让老人记忆力减退、耐力下降、神经衰弱、老年痴呆。
钙离子植物雌激素保护妇女
前两天下雪,记者在某三甲医院看到,几分钟内有3位因路滑摔倒而骨折的市民前来就诊,竟全是50多岁的女性。
原因是更年期妇女,失去了雌激素的保护,骨丢失远大于男性。
女性孕育,消耗大量的钙,为补其不足,女性产生了一种特殊的生理功能,即让雌激素刺激调控钙平衡的甲状旁腺素,进而激活成骨细胞,促进骨质的生成。
而绝经妇女因雌激素水平下降,甲状旁腺素的分泌和维生素D的羟化功能被抑制,导致骨钙丢失。
大豆异黄酮,其分子结构与人体自身分泌的雌激素极其相似,故称植物雌激素,可对绝经期妇女“雌激素”继续保护。
钙离子补充维生素D有利于钙离子吸收
维生素D是钙被骨髓吸收的载体,L-天门冬氨酸钙钙立速不需要维生素D辅助吸收,会直接被小肠绒毛吸收。
钙离子相关知识编辑钙离子补钙红绿灯
1、绿灯:
维生素D帮助钙吸收
(1)、肠粘膜是钙吸收的首要通道,而维D可促使肠道粘膜生成钙结合蛋白,“运载”钙离子穿过肠腔壁进入血液。
(2)、维D能直接刺激骨骼中的成骨细胞,促进钙盐沉积;维D还能促进破骨细胞的活性,使旧骨质中的骨盐溶解而增加骨钙释放。
(3)、维D在肾脏,间接地促进肾小管对钙的“回收利用”。
2、黄灯:
少食盐等于补钙。
科学家发现,盐的摄入量越多,钙的吸收就越差。
“新版膳食指南”推荐的标准是,每人每日食盐量不超过6克。
钙离子钙质迁徙酿恶果
每日钙摄入量不足,血钙“夺取”骨钙,以保证生命活动之需,而钙质的迁徙,会造成血管硬化等恶果。
人体有一个自稳系统,当血钙水平低时,立刻发布一种信息,甲状旁腺接到信息后,立即分泌“破骨素”,这种激素刺破骨膜,激活破骨细胞,溶出骨钙,补血钙之不足。
而这些溶出的骨钙,其浓度远远高于血钙,极易沉积在血管壁上,吸引胆固醇进入血管,造成动脉硬化。
近年来医学研究表明,补钙,不仅可以防骨质疏松,还可以防治动脉硬化和高血压,还有显著的降低血脂作用。
钙离子钙离子拮抗剂
钙离子拮抗剂也叫钙通道阻滞剂,是高血压治疗中一类非常重要的药物,我国有一半以上服药治疗的高血压患者应用钙离子拮抗剂。
国际上的重要临床研究显示,亚洲患者对钙离子拮抗剂更敏感,也更容易坚持治疗。
那么,钙拮抗剂是如何降低血压的呢?
这一类药物该如何正确使用呢?
讲到钙离子拮抗剂的作用机理,首先要谈高血压是如何产生的。
血压
碱性钙离子球是指血液在血管内流动时对血管壁产生的侧压力。
绝大部分高血压患者(90%以上)没有特定的病因,多是随着年龄增加,血管壁弹性减弱,阻力增加而引起的。
在心肌和血管壁平滑肌细胞膜上都有钙离子通道,它像一扇大门一样控制钙离子的出入,细胞内钙离子浓度的增加,可以引起细胞的收缩,使血管阻力增加,血压升高。
钙离子拮抗剂就像忠实的门卫,它与钙离子通道结合后,就阻止了钙离子进入细胞,从而使血管松弛,阻力减小,血压降低。
另外,有些钙离子拮抗剂如氨氯地平(络活喜),地尔硫卓还能直接舒张供给心脏血液的冠
状动脉,用于治疗心绞痛。
钙拮抗剂是一个成员众多的大家庭,很像在同一把大伞下避雨的人,性别、年龄、种族、性格各不相同。
使用历史最长、最普遍的是硝苯地平(心痛定),它是第一代的钙离子拮抗剂。
服用心痛定后血压很快降低,但由于血管迅速扩张,病人
常常感到头痛、心跳快、面红、不容易坚持治疗。
另外,心痛定作用持续时间短,一般每天需服用3次,并且两次服药间血压可能会上升,很难做到24小时有效控制血压。
基于我国经济发展现状,还有相当部分患者需要价格低廉的药物,但此时需注意不要长期、大剂量服用短效的钙离子拮抗剂,可以加用β-阻滞剂以加强疗效,减少副作用。
为了克服第一代钙离子拮抗剂的缺点,又开发了第二代药物,包括短效钙离子拮抗剂的缓释和控释剂型,通过给以往不够理想的短效药物穿上一件特殊的外衣,达到作用持续时间延长,副作用减少的目的。
但患者的胃肠道功能可能影响药物的疗效,所以此类药不能掰成两半服用。
络活喜是第三代钙离子拮抗剂的代表药物,也是目前唯一分子本身长效的钙离子拮抗剂。
它的半衰期长达35—50小时,因此不需要使用缓释或控释剂型,就可以做到每日服用一次,24小时平稳控制血压,并且它的疗效不受患者胃肠道功能和食物的影响,也可以和绝大多数药物一起服用,还可以掰成两半服用。
另外,由于它的作用持续时间很长,病人偶尔漏服一次不会造成血压升高。
值得一提的是,钙剂与钙离子拮抗剂不矛盾。
实际上,这两种药物虽然作用相反,但联合使用时,其作用非但不会相互抵消,而且能相互促进。
补钙是为了纠正负钙平衡,防止体内的钙代谢紊乱和骨钙丢失,同时避免钙盐异常沉积在血管、软组织内,减少动脉粥样硬化的发生。
细胞膜上有专门的钙离子通道,正常情况下,细胞外的钙离子浓度远远大于细胞内的钙离子浓度,这种浓度梯度的维持主要靠的是钙离子通道。
一旦细胞膜上钙离子通道调控失灵,大量钙离子就会进入细胞内,引起血管平滑肌收缩,血压就会升高,甚至会引起心绞痛、心肌梗死。
钙离子拮抗剂可通过拮抗钙离子通过细胞膜进入细胞,从而减少血管的收缩。
适当正确地使用钙离子拮抗剂能及时关闭钙离子通道,阻断钙离子的非正常内流。
临床中常用的钙离子拮抗剂,如硝苯地平、氨氯地平、拉西地平等都是治疗高血压的首选药物。
由此可见,钙剂与钙离子拮抗剂均能起到保护心脑血管、预防和治疗高血压的作用,两者同服并不矛盾。
临床研究发现,老年高血压患者在服用降压药的同时,服用钙剂有助于降低血压。
此外,补充钙剂能抵消高盐膳食对自发性高血压的致高血压作用,这可能与钙剂可防止血浆中去甲肾上腺素浓度的升高有关。
钙离子钙离子与机体衰老和缺钙
细胞内钙离子增加,导致细胞功能异常(减退或衰竭),是机体衰老的进程。
也就是说,人衰老的过程(机体器官功能减退的过程)就是细胞内钙增加的过程。
细胞内为什么钙会增加呢?
缺钙是一个主要且重要因素:
缺钙——甲状旁腺激素分泌增加——骨钙溶解释放至血液(可导致骨质疏松)——钙进入细胞——细胞内钙增加——降钙素分泌增加——血钙回至骨骼(导致骨质增生)
上述过程是个循环、反馈过程。
细胞内钙增加,平滑肌紧张度增加,在部分人就会出现血压升高——高血压。
从上述循环过程看,血钙不能真实反映机体钙的水平。
因此并不能以血钙水平断定缺钙与否。
所以,适当补钙对延缓衰老、预防疾病有相当重要的临床意义。
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离子 肾上腺素 乙酰胆碱 离体蛙心 活动 影响